Physicochemical Characterization of Pelletized Lime Kiln Dust as Potential Liming Material for Acidic Soils

Abstract

Lime kiln dust (LKD) is a fine particulate material by-product produced during the lime burning processes. Current reuse options are chiefly focused on reuse in the cement industry which are limited by the inherent porosity of this by-product. Due to the presence of calcium (Ca), magnesium (Mg) and other elements which can serve as micronutrients to the plants, LKD has the potential to be used as a replacement for conventional liming materials for both soil pHKCl increase and plant supplement with secondary major- (Ca and Mg) and micronutrients (Mn, Cu, Zn and Ni). The work described here outlines the investigation of physicochemical properties of pelletized LKD materials and their effect on soil pHKCl, available Ca and Mg content in the soil as well as straw and grain yields of spring barley. LKD were analyzed using X-ray diffraction, scanning electron microscopy with energy dispersive analysis, while detailed chemical analysis of both pelletized LKD and soil was performed using Atomic Absorption Spectroscopy. Pellet size and major element composition were used as chief indicators for the liming capacity of LKD. It was shown that low acidic soil (pHKCl 5.4) can be conditioned using fine (0.1–2 mm) pelletized LKD due to the high release rates while coarse pellets (5–8 mm) did not significantly increase available Ca and Mg content in soil and did not reach optimum pHKCl range even after 48 weeks. The highest application rate of LKD at 4 t/ha increased spring barley grain yield compared to control but the increase was not statistically significant. Thus, pelletized lime kiln dust could be a potential alternative to natural limestone or dolomite minerals as liming material for acid soils with the pellet size determining the liming kinetics.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Das, S., Lee, S., Kumar, P., Kim, K., Soo, S., Sundar, S.: Solid waste management : scope and the challenge of sustainability. J. Clean. Prod. 228, 658–678 (2019). https://doi.org/10.1016/j.jclepro.2019.04.323

    Article  Google Scholar 

  2. 2.

    Shekdar, A.V.: Sustainable solid waste management: an integrated approach for Asian countries. Waste Manag. 29(4), 1438–1448 (2009). https://doi.org/10.1016/j.wasman.2008.08.025

    Article  Google Scholar 

  3. 3.

    Jacott, M., Reed, C., Taylor, A., Winfield, M.: Energy Use in the Cement Industry in North America: Emissions, Waste Generation and Pollution Control, 1990–2001; Commission for Environmental Cooperation 2nd North American Symposium on Assessing Environmental Effects of Trade, pp. 1990–2001 (2003)

  4. 4.

    Rodrigues, F.A., Joekes, I.: Cement industry: sustainability, challenges and perspectives. Environ. Chem. Lett. 2011, 151–166 (2011). https://doi.org/10.1007/s10311-010-0302-2

    Article  Google Scholar 

  5. 5.

    Raffetti, E., Treccani, M., Donato, F.: Chemosphere Cement plant emissions and health effects in the general population: a systematic review. Chemosphere 218, 211–222 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.088

    Article  Google Scholar 

  6. 6.

    Miller, M.M., Callaghan, R.M.: Lime Kiln Dust as a Potential Raw Material in Portland Cement Manufacturing. U.S. Geological Survey, Reston (2004)

    Google Scholar 

  7. 7.

    Chesner, W.H., Collina, R.J., MacKay, M.H.: User Guidelines for Waste and By-Product Materials in Pavement Construction, Washington DC (1998)

  8. 8.

    Lime-Treated Soil Construction Manual: Lime Stabilization & Lime Modification (2004)

  9. 9.

    Mackie, A.L., Walsh, M.E.: Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water Res. 46(2), 327–334 (2011). https://doi.org/10.1016/j.watres.2011.10.030

    Article  Google Scholar 

  10. 10.

    Mackie, A., Boilard, S., Walsh, M.E., Lake, C.B.: Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment. J. Hazard. Mater. 173, 283–291 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.081

    Article  Google Scholar 

  11. 11.

    El-Attar, M.M., Sadek, D.M., Salah, A.M.: Recycling of high volumes of cement kiln dust in bricks industry. J. Clean. Prod. 143, 506–515 (2017). https://doi.org/10.1016/j.jclepro.2016.12.082

    Article  Google Scholar 

  12. 12.

    Ali, M.A.M., Yang, H.: Utilization of cement kiln dust in industry cement bricks. Geosyst. Eng. (2014). https://doi.org/10.1080/12269328.2011.10541327

    Article  Google Scholar 

  13. 13.

    Abdel-Ghani, N.T., El-Sayed, H.A., El-Habak, A.A.: Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some “green” cement products. HBRC J. 14(3), 408–414 (2018). https://doi.org/10.1016/j.hbrcj.2017.11.001

    Article  Google Scholar 

  14. 14.

    Siddique, R.: Utilization of cement kiln dust (CKD) in cement mortar and concrete-an overview. Resour. Conserv. Recycl. 48(4), 315–338 (2006). https://doi.org/10.1016/j.resconrec.2006.03.010

    Article  Google Scholar 

  15. 15.

    Maslehuddin, M., Al-Amoudi, O.S.B., Shameem, M., Rehman, M.K., Ibrahim, M.: Usage of cement kiln dust in cement products—research review and preliminary investigations. Constr. Build. Mater. 22, 2369–2375 (2008). https://doi.org/10.1016/j.conbuildmat.2007.09.005

    Article  Google Scholar 

  16. 16.

    Collins, R.J., Emery, J.J.: Kiln Dust-Fly Ash Systems for Highway Bases and Subbases, Washington, DC (1983)

  17. 17.

    Latif, M.A., Naganathan, S., Razak, H.A., Mustapha, K.N.: Performance of lime kiln dust as cementitious material. Procedia Eng. 125, 780–787 (2015). https://doi.org/10.1016/j.proeng.2015.11.135

    Article  Google Scholar 

  18. 18.

    Rahman, M.K., Rehman, S., Al-Amoudi, O.S.B.: Literature review on cement kiln dust usage in soil and waste stabilization and experimental investigation. Int. J. Res. Rev. Appl. Sci. 7(1), 77–87 (2011)

    Google Scholar 

  19. 19.

    Rimal, S., Poudel, R.K., Gautam, D.: Experimental study on properties of natural soils treated with cement kiln dust. Case Stud. Constr. Mater. 10, e00223 (2019). https://doi.org/10.1016/j.cscm.2019.e00223

    Article  Google Scholar 

  20. 20.

    Mosa, A.M., Taher, A.H., Al-Jaberi, L.A.: Improvement of poor subgrade soils using cement kiln dust. Case Stud. Constr. Mater. 7, 138–143 (2017). https://doi.org/10.1016/j.cscm.2017.06.005

    Article  Google Scholar 

  21. 21.

    Kakrasul, J.I., Parsons, R.L., Han, J.: Performance of Lime Kiln Dust-treated subgrade soils. In: IFCEE 2018: Recent Developments in Geotechnical Engineering Practise, 473–484 (2018)

  22. 22.

    Kakrasul, J., Parsons, R.L., Han, J.: Lime kiln dust for treated subgrades (2017)

  23. 23.

    Noller, C.H., White, J.L., Wheeler, W.E.: Characterization of cement kiln dusts and animal response 1. J. Dairy Sci. 63(11), 1947–1952 (1980). https://doi.org/10.3168/jds.S0022-0302(80)83163-8

    Article  Google Scholar 

  24. 24.

    Sreekrishnavilasam, A., King, S., Santagata, M.: Characterization of fresh and landfilled cement kiln dust for reuse in construction applications. Eng. Geol. 85(1–2), 165–173 (2006). https://doi.org/10.1016/j.enggeo.2005.09.036

    Article  Google Scholar 

  25. 25.

    Haynes, R.J., Naidu, R.: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51(1), 123–137 (1998)

    Article  Google Scholar 

  26. 26.

    Eidukeviciene, M., Vasiliauskiene, V., Misevicius, J.: Lietuvos dirvozemiai, pp. 210–213. Monografija; Lietuvos mokslo redakcija, Kaunas (2001)

    Google Scholar 

  27. 27.

    Gerasimova, M., Reinsch, T., Anjos, L., Batkhishing, O., Bockheim, J., Brinkman, R., Broll, G., Charzynski, P., Coulho, M.R., Nachtergeale, F.O., et al.: Status of the World’s Soil Resources (SWSR). FAO, Rome (2015)

    Google Scholar 

  28. 28.

    Szymański, W., Skiba, M., Błachowski, A.: Influence of redox processes on clay mineral transformation in Retisols in the Carpathian Foothills in Poland. Is a ferrolysis process present? J. Soils Sediments 17(2), 453–470 (2017). https://doi.org/10.1007/s11368-016-1531-1

    Article  Google Scholar 

  29. 29.

    Kozowski, M., Komisarek, J.: Textural diversity in selected retisols in the catena of the opalenica plain (western Poland). Soil Sci. Annu. 68(1), 11–18 (2017). https://doi.org/10.1515/ssa-2017-0002

    Article  Google Scholar 

  30. 30.

    Yang, Z.B., Rao, I.M., Horst, W.J.: Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372(1–2), 3–25 (2013). https://doi.org/10.1007/s11104-012-1580-1

    Article  Google Scholar 

  31. 31.

    HruŠka, J., Oulehle, F., Šamonil, P., Šebesta, J., Tahovská, K., Hleb, R., HouŠka, J., Šikl, J.: Long-term forest soil acidification, nutrient leaching and vegetation development: linking modelling and surveys of a primeval spruce forest in the Ukrainian Transcarpathian Mts. Ecol. Model. 244, 28–37 (2012). https://doi.org/10.1016/j.ecolmodel.2012.06.025

    Article  Google Scholar 

  32. 32.

    Holland, J.E., Bennett, A.E., Newton, A.C., White, P.J., McKenzie, B.M., George, T.S., Pakeman, R.J., Bailey, J.S., Fornara, D.A., Hayes, R.C.: Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 610–611, 316–332 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.020

    Article  Google Scholar 

  33. 33.

    Castro, G.S.A., Crusciol, C.A.C., da Costa, C.H.M., Ferrari Neto, J., Mancuso, M.A.C.: Surface application of limestone and calcium-magnesium silicate in a tropical no-tillage system. J. Soil Sci. Plant Nutr. 16(2), 362–379 (2016). https://doi.org/10.4067/S0718-95162016005000034

    Article  Google Scholar 

  34. 34.

    Basak, B.B., Biswas, D.R.: Potentiality of Indian rock phosphate as liming material in acid soil. Geoderma 263, 104–109 (2016). https://doi.org/10.1016/j.geoderma.2015.09.016

    Article  Google Scholar 

  35. 35.

    Tang, P., Brouwers, H.J.H.: Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) and industrial powder wastes by cold-bonding pelletization. Waste Manag. 62, 125–138 (2017). https://doi.org/10.1016/j.wasman.2017.02.028

    Article  Google Scholar 

  36. 36.

    Gesoĝlu, M., Güneyisi, E., Mahmood, S.F., Öz, H.Ö., Mermerdaş, K.: Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. J. Hazard. Mater. 235–236, 352–358 (2012). https://doi.org/10.1016/j.jhazmat.2012.08.013

    Article  Google Scholar 

  37. 37.

    Li, J., Xiao, F., Zhang, L., Amirkhanian, S.N.: Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: a review. J. Clean. Prod. 233, 1182–1206 (2019). https://doi.org/10.1016/j.jclepro.2019.06.061

    Article  Google Scholar 

  38. 38.

    Sell, N.J., Flschbach, F.A.: Pelletizing waste cement kiln dust for more efficient recycling. Ind. Eng. Chem. Process Des. Dev. 17(4), 468–473 (1978). https://doi.org/10.1021/i260068a013

    Article  Google Scholar 

  39. 39.

    Judd, G.G.: Production of Pellets and Pellet-Containing Fertilizer Composition. U.S. patent 4,410,350. October 18 (1983)

  40. 40.

    Kachinski, J.L.: Method of Processing Waste Cement Kiln Dust to Make a Soil Treatment Composition. U.S. patent 4,402,891. September 6 (1983)

  41. 41.

    Bolan, N.S., Adriano, D.C., Curtin, D.: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 78, 215–272 (2003). https://doi.org/10.1016/S0065-2113(02)78006-1

    Article  Google Scholar 

  42. 42.

    Verlinden, G., Pycke, B., Mertens, J., Debersaques, F., Verheyen, K., Baert, G., Bries, J., Haesaert, G.: Application of humic substances results in consistent increases in crop yield and nutrient uptake. J. Plant Nutr. 32(9), 1407–1426 (2009). https://doi.org/10.1080/01904160903092630

    Article  Google Scholar 

  43. 43.

    WRB Iuss Working Group: World Reference Base for Soil Resources 2014. WRB Iuss Working Group, Rome (2014)

    Google Scholar 

  44. 44.

    Egnér, H., Riehm, H., Domingo, W.R.: Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nährstoffzustandes der Böden, vol. 26. Kungliga Lantbrukshögskolans Annaler (1960)

  45. 45.

    Institute; SAS: The SAS System for Windows Version 9.4. SAS Institute: Cary, NC, USA (2016)

  46. 46.

    Morrissey, J., Guerinot, M.L.: Iron uptake and transport in plants: the good, the bad, and the ionome. Chem. Rev. 109(10), 4553–4567 (2009). https://doi.org/10.1021/cr900112r

    Article  Google Scholar 

  47. 47.

    Nikolic, M., Kastori, R.: Effect of bicarbonate and Fe supply on Fe nutrition of grapevine. J. Plant Nutr. 23(11–12), 1619–1627 (2000). https://doi.org/10.1080/01904160009382128

    Article  Google Scholar 

  48. 48.

    Foy, C.D., Chaney, R.L., White, M.C.: The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29, 511–566 (1978)

    Article  Google Scholar 

  49. 49.

    Regulation (EU): 2019/1009 of the European Parliament and of the Council of 5 June 2019, laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regul2019/1009 of the. Off. J. Eur. Union 2019(2003), 1–114 (2019)

    Google Scholar 

  50. 50.

    United States Environmental Protection Agency: Background Report on Fertilizer Use, Contaminants and Regulations. EPA 747-R-98-003; Washington, DC (1999)

  51. 51.

    Khanam, R., Kumar, A., Nayak, A.K., Shahid, M., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., et al.: Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 699, 134330 (2020). https://doi.org/10.1016/j.scitotenv.2019.134330

    Article  Google Scholar 

  52. 52.

    Shaw, W.M.: Rate of reaction of limestone wih soils (1960)

  53. 53.

    Hoşten, Ç., Gülsün, M.: Reactivity of limestones from different sources in Turkey. Miner. Eng. 17(1), 97–99 (2004). https://doi.org/10.1016/j.mineng.2003.10.009

    Article  Google Scholar 

  54. 54.

    Huang, J., Fisher, P.R., Argo, W.R.: Protocol to quantify the reactivity of carbonate limestone for horticultural substrates. Commun. Soil Sci. Plant Anal. 38(5–6), 719–737 (2007). https://doi.org/10.1080/00103620701220643

    Article  Google Scholar 

  55. 55.

    Markgraf, S.A., Reeder, R.J.: High-temperature structure refinements of calcite and magnesite. Am. Mineral. 70(5–6), 590–600 (1985)

    Google Scholar 

  56. 56.

    Steinfink, H., Sans, F.J.: Refinement of the crystal structure of dolomite. Am. Mineral. 44(5–6), 679–682 (1959)

    Google Scholar 

  57. 57.

    Desgranges, L., Grebille, D., Calvarin, G., Chevrier, G., Floquet, N., Niepce, J.-C.: Hydrogen thermal motion in calcium hydroxide: Ca(OH)2. Acta Crystallogr. Sect. B 49(5), 812–817 (1993). https://doi.org/10.1107/S0108768193003556

    Article  Google Scholar 

  58. 58.

    Levien, L., Prewitt, C.T., Weidner, D.J., Prewir, C.T., Weidner, D.J.: Structure and elastic properties of quartz at pressure. Am. Mineral. 65(9–10), 920–930 (1980)

    Google Scholar 

  59. 59.

    Thirumalini, S., Ravi, R., Rajesh, M.: Experimental investigation on physical and mechanical properties of lime mortar: effect of organic addition. J. Cult. Herit. 31, 97–104 (2017). https://doi.org/10.1016/j.culher.2017.10.009

    Article  Google Scholar 

  60. 60.

    Ravi, R., Rajesh, M., Thirumalini, S.: Mechanical and physical properties of natural additive dispersed lime. J. Build. Eng. 15, 70–77 (2018). https://doi.org/10.1016/j.jobe.2017.10.009

    Article  Google Scholar 

  61. 61.

    Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A., Gweon, H.S., Malik, A., Jones, D.L., Clark, I.M., Hirsch, P.R., et al.: The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol. Biochem. 138, 107601 (2019). https://doi.org/10.1016/j.soilbio.2019.107601

    Article  Google Scholar 

  62. 62.

    Kiani, D., Silva, M., Sheng, Y., Baltrusaitis, J.: Experimental insights into the genesis and growth of struvite particles on low-solubility dolomite mineral surfaces. J. Phys. Chem. C 123, 25135–25145 (2019). https://doi.org/10.1021/acs.jpcc.9b05292

    Article  Google Scholar 

  63. 63.

    Letterman, R.D.: Calcium Carbonate Dissolution Rate in Limestone Contactors, vol. EPA/600/SR, Cincinnati (1995)

  64. 64.

    de Vargas, J.P.R., dos Santos, D.R., Bastos, M.C., Schaefer, G., Parisi, P.B.: Application forms and types of soil acidity corrective: changes in depth chemical attributes in long term period experiment. Soil Tillage Res. 185, 47–60 (2019). https://doi.org/10.1016/j.still.2018.08.014

    Article  Google Scholar 

  65. 65.

    Islam, A.K.M.S., Edwards, D.G., Asher, C.J.: pH optima for crop growth—results of a flowing solution culture experiment with six species. Plant Soil 54(3), 339–357 (1980). https://doi.org/10.1007/BF02181830

    Article  Google Scholar 

  66. 66.

    Álvarez, E., Viadé, A., Fernández-Marcos, M.L.: Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 152(1–2), 1–8 (2009). https://doi.org/10.1016/j.geoderma.2009.04.011

    Article  Google Scholar 

  67. 67.

    Higgins, S., Morrison, S., Watson, C.J.: Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity. Soil Use Manag. 28(1), 62–69 (2012). https://doi.org/10.1111/j.1475-2743.2011.00380.x

    Article  Google Scholar 

  68. 68.

    Rodd, A.V., MacLeod, J.A., Warman, R.R., McRae, K.B.: Surface application of cement kiln dust and lime to forages: effect on soil pH. Can. J. Soil Sci. 84(3), 317–322 (2004). https://doi.org/10.4141/S03-087

    Article  Google Scholar 

  69. 69.

    Tate, M.: Lime kiln dust: an overlooked resource. In: Thomson, M., Brisch, J. (eds.) Lime: Building on the 100-Year Legacy of The ASTM Committee C07 on June 28, 2012, in San Diego, CA, pp. 135–144. ASTM International, West Conshohocken (2012)

    Google Scholar 

  70. 70.

    Zhang, X., Glasser, F.P., Scrivener, K.L.: Reaction kinetics of dolomite and portlandite. Cem. Concr. Res. 66, 11–18 (2014). https://doi.org/10.1016/j.cemconres.2014.07.017

    Article  Google Scholar 

  71. 71.

    Lalande, R., Gagnon, B., Royer, I.: Impact of natural or industrial liming materials on soil properties and microbial activity. Can. J. Soil Sci. 89, 209–222 (2009)

    Article  Google Scholar 

  72. 72.

    Gunes, A., Alpaslan, M., Inal, A.: Critical nutrient concentrations and antagonistic and synergistic relationships among the nutrients of NFT-grown young tomato plants. J. Plant Nutr. 21(10), 2035–2047 (1998). https://doi.org/10.1080/01904169809365542

    Article  Google Scholar 

  73. 73.

    Laudelout, H.: Chemical and microbiological effects of soil liming in a broad-leaved forest ecosystem. For. Ecol. Manag. 61(3–4), 247–261 (1993). https://doi.org/10.1016/0378-1127(93)90205-2

    Article  Google Scholar 

  74. 74.

    Repsiene, R., Karcauskiene, D.: Changes in the chemical properties of acid soil and aggregate stability in the whole profile under long-term management history. Acta Agric. Scand. Sect. B Soil Plant Sci 66(8), 671–676 (2016). https://doi.org/10.1080/09064710.2016.1200130

    Article  Google Scholar 

  75. 75.

    Ngane, E.B., Tening, A.S., Ehabe, E.E., Tchuenteu, F.: Potentials of some cement by-products for liming of an acid soil in the humid zone of South-Western Cameroon. Agric. Biol. J. N. Am. 3(8), 326–331 (2012). https://doi.org/10.5251/abjna.2012.3.8.326.331

    Article  Google Scholar 

  76. 76.

    Dolling, P.J., Porter, W.M., Robsor, A.D.: Effect of soil acidity on barley production in the south-west of Western Australia 1. The interaction between lime and nutrient application. Aust. J. Exp. Agric. 31(6), 803–810 (1991). https://doi.org/10.1071/EA9910803

    Article  Google Scholar 

  77. 77.

    Liu, D.L., Helyar, K.R., Conyers, M.K., Fisher, R., Poile, G.J.: Response of wheat, triticale and barley to lime application in semi-arid soils. Field Crop. Res. 90(2–3), 287–301 (2004). https://doi.org/10.1016/j.fcr.2004.03.008

    Article  Google Scholar 

  78. 78.

    Madić, M., Knežević, D., Đurović, D., Paunović, A., Stevović, V., Tomić, D., Đekić, V.: Assessment of the correlation between grain yield and its components in spring barley on an acidic soil. Acta Agric. Serbica 24(47), 41–49 (2019). https://doi.org/10.5937/aaser1947041m

    Article  Google Scholar 

  79. 79.

    Kirchev, H., Delibaltova, V., Yanchev, I., Zheliazkov, I.: Comparative investigation of rye type triticale varieties, grown in the agroecological conditions of Thrace valley. Bulg. J. Agric. Sci. 18(5), 696–700 (2012)

    Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation under grant no. CHE 1710120 and DBI 1828508, and by the long-term research program ‘Productivity and sustainability of agricultural and forest soils’ implemented by the Lithuanian Research Centre for Agriculture and Forestry. This work is also supported by Engineering for Agricultural Production Systems program grant no. 2020-67022-31144 from the USDA National Institute of Food and Agriculture.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonas Baltrusaitis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1365 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drapanauskaite, D., Buneviciene, K., Repsiene, R. et al. Physicochemical Characterization of Pelletized Lime Kiln Dust as Potential Liming Material for Acidic Soils. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01107-0

Download citation

Keywords

  • Pelletized lime kiln dust
  • Liming materials
  • Soil pH