A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites

Abstract

The increasing environmental awareness and demand for utilizing waste materials have aroused the interest in utilizing agricultural wastes in developing sustainable composites for various applications. The date palm tree (Phoenix dactylifera L.) is considered as the most abundant agricultural crop in the MENA region which produces around 2.6–2.8 million tons of waste, deposited annually in landfills. This paper thoroughly discusses date palm tree fibres, including fibres resources, properties and treatments required, and their composite developments. Critically reviewing the literature shows a need for interpretation of the current findings and highlights the areas that have not yet been developed and covered. Various chemical treatment methods have been adopted to pre-treat the fibre, technically and economically feasible treatments are yet to be found. Commercial production of date palm composites is still in its infancy, more efforts should be made in optimising the formulations and processing parameters. This review provides a comprehensive database and platform for researchers and industries to better determine how to utilize date palm fibres in producing more sustainable and renewable materials and how to effectively design and use date palm fibre composites for various applications.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Al-Oqla, F.M., Alothman, O.Y., Jawaid, M., Sapuan, S.M., Es-Saheb, M.H.: Processing and properties of date palm fibers and its composites. Biomass Bioenergy Process. Prop. (2014). https://doi.org/10.1007/978-3-319-07641-6_1

    Article  Google Scholar 

  2. 2.

    Mukherjee, T., Kao, N.: PLA based biopolymer reinforced with natural fibre: a review. J. Polym. Environ. 19, 714–725 (2011). https://doi.org/10.1007/s10924-011-0320-6

    Article  Google Scholar 

  3. 3.

    Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., et al.: Polyvinyl alcohol-modified Pithecellobium Clypearia Benth herbal residue fiberpolypropylene composites. Polym. Compos. 37, 915–924 (2016)

    Article  Google Scholar 

  4. 4.

    Long, H., Li, X., Wang, H., Jia, J.: Biomass resources and their bioenergy potential estimation: a review. Renew. Sustain. Energy Rev. 26, 344–352 (2013). https://doi.org/10.1016/j.rser.2013.05.035

    Article  Google Scholar 

  5. 5.

    Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M.A., Hassan, A., Wahit, M.U.: Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater. Des. 52, 841–848 (2013). https://doi.org/10.1016/j.matdes.2013.06.022

    Article  Google Scholar 

  6. 6.

    Ibrahim, H., Farag, M., Megahed, H., Mehanny, S.: Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr. Polym. 101, 11–19 (2014). https://doi.org/10.1016/j.carbpol.2013.08.051

    Article  Google Scholar 

  7. 7.

    Malkapuram, R., Kumar, V., Singh, N.Y.: Recent development in natural fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 28, 1169–1189 (2009). https://doi.org/10.1177/0731684407087759

    Article  Google Scholar 

  8. 8.

    Kriker, A., Bali, A., Debicki, G., Bouziane, M., Chabannet, M.: Durability of date palm fibres and their use as reinforcement in hot dry climates. Cem. Concr. Compos. 30, 639–648 (2008). https://doi.org/10.1016/j.cemconcomp.2007.11.006

    Article  Google Scholar 

  9. 9.

    Kriker, A., Debicki, G., Bali, A., Khenfer, M.M., Chabannet, M.: Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem. Concr. Compos. 27, 554–564 (2005). https://doi.org/10.1016/j.cemconcomp.2004.09.015

    Article  Google Scholar 

  10. 10.

    Mokhtari, A., Kriker, A., Guemmoula, Y., Boukrioua, A., Khenfer, M.M.: Formulation and characterization of date palm fibers mortar by addition of crushed dune sand. Energy Procedia 74, 44–50 (2015). https://doi.org/10.1016/j.egypro.2015.07.624

    Article  Google Scholar 

  11. 11.

    Mekhermeche, A., Kriker, A., Dahmani, S.: Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4959400

    Article  Google Scholar 

  12. 12.

    Tioua, T., Kriker, A., Barluenga, G., Palomar, I.: Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Constr. Build. Mater. 154, 721–733 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.229

    Article  Google Scholar 

  13. 13.

    Hakkoum, S., Kriker, A., Mekhermeche, A.: Thermal characteristics of model houses Manufactured by date palm fiber reinforced earth bricks in desert regions of Ouargla Algeria. Energy Procedia 119, 662–669 (2017). https://doi.org/10.1016/j.egypro.2017.07.093

    Article  Google Scholar 

  14. 14.

    Joseph, K., Thomas, S., Pavithran, C.: Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites. Compos. Sci. Technol. 53, 99–110 (1995). https://doi.org/10.1016/0266-3538(94)00074-3

    Article  Google Scholar 

  15. 15.

    Dittenber, D.B., Gangarao, H.V.S.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A 43, 1419–1429 (2012). https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  16. 16.

    Al-Oqla, F.M., Sapuan, S.M.: Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354 (2014). https://doi.org/10.1016/j.jclepro.2013.10.050

    Article  Google Scholar 

  17. 17.

    Zhou, Y., Fan, M., Chen, L.: Interface and bonding mechanisms of plant fibre composites: an overview. Compos. B 101, 31–45 (2016). https://doi.org/10.1016/j.compositesb.2016.06.055

    Article  Google Scholar 

  18. 18.

    Chimeni, D.Y., Toupe, J.L., Dubois, C., Rodrigue, D.: Effect of hemp surface modification on the morphological and tensile properties of linear medium density polyethylene (LMDPE) composites. Compos. Interfaces 23, 405–421 (2016). https://doi.org/10.1080/09276440.2016.1144163

    Article  Google Scholar 

  19. 19.

    Brahmakumar, M., Pavithran, C., Pillai, R.M.: Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Compos. Sci. Technol. 65, 563–569 (2005). https://doi.org/10.1016/j.compscitech.2004.09.020

    Article  Google Scholar 

  20. 20.

    Abu-Sharkh, B.F., Hamid, H.: Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym. Degrad. Stab. 85, 967–973 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.10.022

    Article  Google Scholar 

  21. 21.

    Al-Kaabi, K., Al-Khanbashi, A., Hammami, A.: Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polym. Compos. 26, 604–613 (2005). https://doi.org/10.1002/pc.20130

    Article  Google Scholar 

  22. 22.

    Saleh, M.A., Al Haron, M.H., Saleh, A.A., Farag, M.: Fatigue behavior and life prediction of biodegradable composites of starch reinforced with date palm fibers. Int. J. Fatigue 103, 216–222 (2017). https://doi.org/10.1016/j.ijfatigue.2017.06.005

    Article  Google Scholar 

  23. 23.

    Zadeh, K.M., Inuwa, I.M., Arjmandi, R., Hassan, A., Almaadeed, M., Mohamad, Z., et al.: Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites. Fibers Polym. 18, 1330–1335 (2017). https://doi.org/10.1007/s12221-017-1106-9

    Article  Google Scholar 

  24. 24.

    Gheith, M.H., Aziz, M.A., Ghori, W., Saba, N., Asim, M., Jawaid, M., et al.: Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J. Mater. Res. Technol. 8, 853–860 (2019). https://doi.org/10.1016/j.jmrt.2018.06.013

    Article  Google Scholar 

  25. 25.

    Mahdavi, S., Kermanian, H., Varshoei, A.: Comparison of mechanical properties of date palm fiber-polyethylene composite. BioResources 5(4), 2391–2403 (2010)

    Google Scholar 

  26. 26.

    Abdal-Hay, A., Suardana, N.P.G., Jung, D.Y., Choi, K.S., Lim, J.K.: Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int. J. Precis. Eng. Manuf. 13, 1199–1206 (2012). https://doi.org/10.1007/s12541-012-0159-3

    Article  Google Scholar 

  27. 27.

    AlMaadeed, M.A., Kahraman, R., Noorunnisa Khanam, P., Madi, N.: Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: mechanical and thermal properties. Mater. Des. 42, 289–294 (2012). https://doi.org/10.1016/j.matdes.2012.05.055

    Article  Google Scholar 

  28. 28.

    Mirmehdi, S.M., Zeinaly, F., Dabbagh, F.: Date palm wood flour as filler of linear low-density polyethylene. Compos. B 56, 137–141 (2014). https://doi.org/10.1016/j.compositesb.2013.08.008

    Article  Google Scholar 

  29. 29.

    Mohanty, J.R., Das, S.N., Das, H.C., Swain, S.K.: Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fibers Polym. 15, 1062–1070 (2014). https://doi.org/10.1007/s12221-014-1062-6

    Article  Google Scholar 

  30. 30.

    Shalwan, A., Yousif, B.F.: Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater. Des. 59, 264–273 (2014). https://doi.org/10.1016/j.matdes.2014.02.066

    Article  Google Scholar 

  31. 31.

    Mohanty, J.R.: Investigation on solid particle erosion behavior of date palm leaf fiber-reinforced polyvinyl pyrrolidone composites. J. Thermoplast. Compos. Mater. 30, 1003–1016 (2017). https://doi.org/10.1177/0892705715614079

    Article  Google Scholar 

  32. 32.

    Ibrahim, H., Mehanny, S., Darwish, L., Farag, M.: A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibers. J. Polym. Environ. 26, 2434–2447 (2017). https://doi.org/10.1007/s10924-017-1143-x

    Article  Google Scholar 

  33. 33.

    Al-Khanbashi, A., Al-Kaabi, K., Hammami, A.: Date palm fibers as polymeric matrix reinforcement: fiber characterization. Polym. Compos. 26, 486–497 (2005). https://doi.org/10.1002/pc.20118

    Article  Google Scholar 

  34. 34.

    Abd Rabou, A.F.N., Radwan, E.S.: The current status of the date palm (Phoenix dactylifera) and its uses in the Gaza Strip Palestine. Biodiversitas 18, 1047–1061 (2017). https://doi.org/10.13057/biodiv/d180324

    Article  Google Scholar 

  35. 35.

    Al-Alawi, R., Al-Mashiqri, J.H., Al-Nadabi, J.S.M., Al-Shihi, B.I., Baqi, Y.: Date palm tree (Phoenix dactylifera L): natural products and therapeutic options. Front Plant Sci (2017). https://doi.org/10.3389/fpls.2017.00845

    Article  Google Scholar 

  36. 36.

    Ghori, W., Saba, N., Jawaid, M., Asim, M.: A review on date palm (Phoenix dactylifera) fibers and its polymer composites. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/368/1/012009

    Article  Google Scholar 

  37. 37.

    Jaradat, A.A., Zaid, A.: Quality traits of date palm fruits in a center of origin and center of diversity. Food Agric. Environ. 2, 208–217 (2004)

    Google Scholar 

  38. 38.

    Arab Agricultural Statistics Yearbook 2016 (2016). http://www.aoad.org/statbook36.pdf

  39. 39.

    Bouguedoura, N., Bennaceur, M., Babahani, S., Benziouche, S.E.: Date palm status and perspective in Algeria. Date Palm Genet. Resour. Util. (2015). https://doi.org/10.1007/978-94-017-9694-1_4

    Article  Google Scholar 

  40. 40.

    Chao, C.C.T., Krueger, R.R.: The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42, 1077–1082 (2007). https://doi.org/10.21273/hortsci.42.5.1077

    Article  Google Scholar 

  41. 41.

    Nasser, R.A., Salem, M.Z.M., Hiziroglu, S., Al-Mefarrej, H.A., Mohareb, A.S., Alam, M., et al.: Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies (2016). https://doi.org/10.3390/en9050374

    Article  Google Scholar 

  42. 42.

    Elseify, L.A., Midani, M., Shihata, L.A., El-Mously, H.: Review on cellulosic fibers extracted from date palms (Phoenix dactylifera L.) and their applications. Cellulose 26, 2209–2232 (2019). https://doi.org/10.1007/s10570-019-02259-6

    Article  Google Scholar 

  43. 43.

    Barreveld, W.H.: Date Palm Products. Illustrate. Food and Agriculture Organization of the United Nations, Rome (1993)

    Google Scholar 

  44. 44.

    Chandrasekaran, M., Bahkali, A.H.: Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology—review. Saudi J. Biol. Sci. 20, 105–120 (2013). https://doi.org/10.1016/j.sjbs.2012.12.004

    Article  Google Scholar 

  45. 45.

    Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R., et al.: A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  46. 46.

    Komuraiah, A., Kumar, N.S., Prasad, B.D.: Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater. 50, 359–376 (2014). https://doi.org/10.1007/s11029-014-9422-2

    Article  Google Scholar 

  47. 47.

    Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W.: A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424–442 (2013). https://doi.org/10.1016/j.matdes.2012.11.025

    Article  Google Scholar 

  48. 48.

    John, M.J., Anandjiwala, R.D., Pothan, L.A., Thomas, S.: Cellulosic fibre-reinforced green composites. Compos. Interfaces 14, 733–751 (2007). https://doi.org/10.1163/156855407782106546

    Article  Google Scholar 

  49. 49.

    John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008). https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  Google Scholar 

  50. 50.

    El-Morsy, M.: Studies on the rachises of the Egyptian date palm leaves for hardboard production. Fibre Sci. Technol. 13, 317–323 (1980)

    Article  Google Scholar 

  51. 51.

    Pandey, S.N., Ghosh, S.K.: The chemical nature of date-palm (Phoenix dactylifera L.) leaf fibre. J. Text. Inst. 86, 487–489 (1995). https://doi.org/10.1080/00405009508658775

    Article  Google Scholar 

  52. 52.

    Khristova, P., Kordsachia, O., Khider, T.: Alkaline pulping with additives of date palm rachis and leaves from Sudan. Bioresour. Technol. 96, 79–85 (2005). https://doi.org/10.1016/j.biortech.2003.05.005

    Article  Google Scholar 

  53. 53.

    Kaddami, H., Dufresne, A., Khelifi, B., Bendahou, A., Taourirte, M., Raihane, M., et al.: Short palm tree fibers—thermoset matrices composites. Compos. A 37, 1413–1422 (2006). https://doi.org/10.1016/j.compositesa.2005.06.020

    Article  Google Scholar 

  54. 54.

    Taha, I., Steuernagel, L., Ziegmann, G.: Chemical modification of date palm mesh fibres for reinforcement of polymeric materials. Part I examination of different cleaning methods. Polym. Polym. Compos. 14, 767–778 (2006). https://doi.org/10.1177/096739110601400802

    Article  Google Scholar 

  55. 55.

    Bendahou, A., Dufresne, A., Kaddami, H., Habibi, Y.: Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohydr. Polym. 68, 601–608 (2007). https://doi.org/10.1016/j.carbpol.2006.10.016

    Article  Google Scholar 

  56. 56.

    Sbiai, A., Kaddami, H., Fleury, E., Maazouz, A., Erchiqui, F., Koubaa, A., et al.: Effect of the fiber size on the physicochemical and mechanical properties of composites of epoxy and date palm tree fibers. Macromol. Mater. Eng. 293, 684–691 (2008). https://doi.org/10.1002/mame.200800087

    Article  Google Scholar 

  57. 57.

    Sbiai, A., Kaddami, H., Sautereau, H., Maazouz, A., Fleury, E.: TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydr. Polym. 86, 1445–1450 (2011). https://doi.org/10.1016/j.carbpol.2011.06.005

    Article  Google Scholar 

  58. 58.

    Khiari, R., Mhenni, M.F., Belgacem, M.N., Mauret, E.: Chemical composition and pulping of date palm rachis and Posidonia oceanica—a comparison with other wood and non-wood fibre sources. Bioresour. Technol. 101, 775–780 (2010). https://doi.org/10.1016/j.biortech.2009.08.079

    Article  Google Scholar 

  59. 59.

    Nasser, R.A., Al-Mefarrej, H.A.: Midribs of date palm as a raw material for wood-cement composite industry in Saudi Arabia. World Appl. Sci. J. 15, 1651–1658 (2011)

    Google Scholar 

  60. 60.

    Amirou, S., Zerizer, A., Haddadou, I., Merlin, A.: Effects of corona discharge treatment on the mechanical properties of biocomposites from polylactic acid and Algerian date palm fibres. Sci. Res. Essays 8, 946–952 (2013). https://doi.org/10.5897/SRE2013.5507

    Article  Google Scholar 

  61. 61.

    Hamza, S., Saad, H., Charrier, B., Ayed, N., Charrier-El, B.F.: Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Ind. Crops Prod. 49, 357–365 (2013). https://doi.org/10.1016/j.indcrop.2013.04.052

    Article  Google Scholar 

  62. 62.

    Saadaoui, N., Rouilly, A., Fares, K., Rigal, L.: Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Mater. Des. 50, 302–308 (2013). https://doi.org/10.1016/j.matdes.2013.03.011

    Article  Google Scholar 

  63. 63.

    Nasser, R.A.S.: An evaluation of the use of midribs from common date palm cultivars grown in Saudi Arabia for energy production. BioResources 9(3), 4343–4357 (2014)

    Article  Google Scholar 

  64. 64.

    Almi, K., Benchabane, A., Lakel, S., Kriker, A.: Potential utilization of date palm wood as composite reinforcement. J. Reinf. Plast. Compos. 34, 1231–1240 (2015). https://doi.org/10.1177/0731684415588356

    Article  Google Scholar 

  65. 65.

    Chaib, H., Kriker, A., Mekhermeche, A.: Thermal study of earth bricks reinforced by date palm fibers. Energy Procedia 74, 919–925 (2015). https://doi.org/10.1016/j.egypro.2015.07.827

    Article  Google Scholar 

  66. 66.

    Hegazy, S., Ahmed, K.: Effect of date palm cultivar, particle size, panel density and hot water extraction on particleboards manufactured from date palm fronds. Agriculture 5, 267–285 (2015). https://doi.org/10.3390/agriculture5020267

    Article  Google Scholar 

  67. 67.

    Zhang, T., Guo, M., Cheng, L., Li, X.: Investigations on the structure and properties of palm leaf sheath fiber. Cellulose 22, 1039–1051 (2015). https://doi.org/10.1007/s10570-015-0570-x

    Article  Google Scholar 

  68. 68.

    Al-Otaibi, H.M., Al-Suhaibani, A.S., Alsoliman, H.A.: Physical and rheological properties of asphalt modified with cellulose date palm fibres. Int. J. Civ. Environ. Eng. 10, 583–587 (2016)

    Google Scholar 

  69. 69.

    Bourmaud, A., Dhakal, H., Habrant, A., Padovani, J., Siniscalco, D., Ramage, M.H., et al.: Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Compos. A 103, 292–303 (2017). https://doi.org/10.1016/j.compositesa.2017.10.017

    Article  Google Scholar 

  70. 70.

    Adel, A., El-Shafei, A., Ibrahim, A., Al-Shemy, M.: Extraction of oxidized nanocellulose from date palm (Phoenix dactylifera L.) sheath fibers: influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind. Crops Prod. 124, 155–165 (2018). https://doi.org/10.1016/j.indcrop.2018.07.073

    Article  Google Scholar 

  71. 71.

    Alshammari, B.A., Saba, N., Alotaibi, M.D., Alotibi, M.F., Jawaid, M., Alothman, O.Y.: Evaluation of mechanical, physical, and morphological properties of epoxy composites reinforced with different date palm fillers. Materials (Basel) (2019). https://doi.org/10.3390/ma12132145

    Article  Google Scholar 

  72. 72.

    Lahouioui, M., Ben Arfi, R., Fois, M., Ibos, L., Ghorbal, A.: Investigation of fiber surface treatment effect on thermal, mechanical and acoustical properties of date palm fiber-reinforced cementitious composites. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00745-3

    Article  Google Scholar 

  73. 73.

    Raghavendra, S., Lokesh, G.N.: Evaluation of mechanical properties in date palm fronds polymer composites. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5085592

    Article  Google Scholar 

  74. 74.

    Alves, C., Ferrão, P.M.C., Silva, A.J., Reis, L.G., Freitas, M., Rodrigues, L.B., et al.: Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 18, 313–327 (2010). https://doi.org/10.1016/j.jclepro.2009.10.022

    Article  Google Scholar 

  75. 75.

    Al-Juruf, R.S., Ahmed, F.A., Alam, I.A., Abdel-Rahman, H.H.: Determination of the thermal conductivity of date palm leaves. J. Therm. Envel. Build. Sci. 11, 152–157 (1988). https://doi.org/10.1177/109719638801100303

    Article  Google Scholar 

  76. 76.

    Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R.: Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23, 2905–2916 (2016). https://doi.org/10.1007/s10570-016-1005-z

    Article  Google Scholar 

  77. 77.

    Rao, K.M.M., Rao, K.M.: Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos. Struct. 77, 288–295 (2007). https://doi.org/10.1016/j.compstruct.2005.07.023

    Article  Google Scholar 

  78. 78.

    Hassan, M.L., Bras, J., Hassan, E.A., Silard, C., Mauret, E.: Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind. Crops Prod. 55, 102–108 (2014). https://doi.org/10.1016/j.indcrop.2014.01.055

    Article  Google Scholar 

  79. 79.

    Alajmi, M., Shalwan, A.: Correlation between mechanical properties with specific wear rate and the coefficient of friction of graphite/epoxy composites. Materials (Basel) 8, 4162–4175 (2015). https://doi.org/10.3390/ma8074162

    Article  Google Scholar 

  80. 80.

    Elwaleed, A.K., Nikabdullah, N., Nor, M.J.M., Tahir, M.F.M., Zulkifli, R.: Sound absorption properties of a low-density perforated date palm fibres panel. Int. J. Comput. Appl. Technol. 52(4), 213–219 (2015)

    Article  Google Scholar 

  81. 81.

    Hammood, A.S.: Effect of erosion on water absorption and morphology for treated date palm fiber-reinforced polyester composites. Int. J. Mech. Mechatron. Eng. 15, 108–114 (2015)

    Google Scholar 

  82. 82.

    Al-Rifaie, W.N., Al-Niami, M.: Mechanical performance of date palm fibre-reinforced gypsums. Innov. Infrastruct. Solut. 1, 1–7 (2016). https://doi.org/10.1007/s41062-016-0022-y

    Article  Google Scholar 

  83. 83.

    Boukhattem, L., Boumhaout, M., Hamdi, H., Benhamou, B., Ait, N.F.: Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 148, 811–823 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.020

    Article  Google Scholar 

  84. 84.

    Wong, K.J., Yousif, B.F., Low, K.O.: The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proc. Inst. Mech. Eng. L 224, 139–148 (2010). https://doi.org/10.1243/14644207JMDA304

    Article  Google Scholar 

  85. 85.

    Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., Bergado, D.T.: Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr. Polym. 82, 1090–1096 (2010). https://doi.org/10.1016/j.carbpol.2010.06.036

    Article  Google Scholar 

  86. 86.

    Alawar, A., Hamed, A.M., Al-Kaabi, K.: Characterization of treated date palm tree fiber as composite reinforcement. Compos. B 40, 601–606 (2009). https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  Google Scholar 

  87. 87.

    Elbadry, E.A.: Agro-residues: surface treatment and characterization of date palm tree fiber as composite reinforcement. J. Compos. 2014, 1–8 (2014). https://doi.org/10.1155/2014/189128

    Article  Google Scholar 

  88. 88.

    Sisti, L., Totaro, G., Vannini, M., Celli, A.: Retting process as a pretreatment of natural fibers for the development of polymer composites. Lignocellulosic Composite Materials, pp. 97–135. Springer, Cham (2017)

    Google Scholar 

  89. 89.

    Donaghy, J., Levett, P., Haylock, R.: Changes in microbial populations during anaerobic flax retting. J. Appl. Bacteriol. 69, 634–641 (1980)

    Article  Google Scholar 

  90. 90.

    Mohanty, A.K., Misra, M., Drzal, L.T. (eds.): Natural fibers, biopolymers, and biocomposites. CRC press (2005)

  91. 91.

    Li, X., Tabil, L.G., Panigrahi, S.: Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15, 25–33 (2007). https://doi.org/10.1007/s10924-006-0042-3

    Article  Google Scholar 

  92. 92.

    Agrawal, R., Saxena, N., Sharma, K., Thomas, S., Sreekala, M.: Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. A277, (2000)

  93. 93.

    Wazzan, A.A.: The effect of surface treatment on the strength and adhesion characteristics of phoenix dactylifera-L(date palm) fibers. Int. J. Polym. Mater. Polym. Biomater. 55, 485–499 (2006). https://doi.org/10.1080/009140391001804

    Article  Google Scholar 

  94. 94.

    Taha, I., Steuernagel, L., Ziegmann, G.: Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos. Interfaces 14, 669–684 (2007). https://doi.org/10.1163/156855407782106528

    Article  Google Scholar 

  95. 95.

    Alsaeed, T., Yousif, B.F., Ku, H.: The potential of using date palm fibres as reinforcement for polymeric composites. Mater. Des. 43, 177–184 (2013). https://doi.org/10.1016/j.matdes.2012.06.061

    Article  Google Scholar 

  96. 96.

    Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., El Bouari, A.: The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–polyurethane composite. S. Afr. J. Chem. Eng. 23, 116–123 (2017). https://doi.org/10.1016/j.sajce.2017.04.005

    Article  Google Scholar 

  97. 97.

    Keener, T.J., Stuart, R.K., Brown, T.K.: Maleated coupling agents for natural fibre composites. Compos. A 35, 357–362 (2004). https://doi.org/10.1016/j.compositesa.2003.09.014

    Article  Google Scholar 

  98. 98.

    AlMaadeed, M.A., Nógellová, Z., Janigová, I., Krupa, I.: Improved mechanical properties of recycled linear low-density polyethylene composites filled with date palm wood powder. Mater. Des. 58, 209–216 (2014). https://doi.org/10.1016/j.matdes.2014.01.051

    Article  Google Scholar 

  99. 99.

    Aldousiri, B., Alajmi, M., Shalwan, A.: Mechanical properties of palm fibre reinforced recycled HDPE. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/508179

    Article  Google Scholar 

  100. 100.

    AlMaadeed, M.A., Kahraman, R., Noorunnisa Khanam, P., Al-Maadeed, S.: Characterization of untreated and treated male and female date palm leaves. Mater. Des. 43, 526–531 (2013). https://doi.org/10.1016/j.matdes.2012.07.028

    Article  Google Scholar 

  101. 101.

    Anyakora, A.N.: Investigation of impact strength properties of oil and date palm frond fiber reinforced polyester composites. Int. J. Curr. Eng. Technol. 3, 493–497 (2013)

    Google Scholar 

  102. 102.

    Mahmoudi, N.: Use of date palm fibers as reinforcement for thermoplastic-based composites. Mech. Ind. 14, 71–77 (2013). https://doi.org/10.1051/meca/2012043

    Article  Google Scholar 

  103. 103.

    Amroune, S., Bezazi, A., Belaadi, A., Zhu, C., Scarpa, F., Rahatekar, S., et al.: Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Compos. A 71, 95–106 (2015). https://doi.org/10.1016/j.compositesa.2014.12.011

    Article  Google Scholar 

  104. 104.

    Eslami-Farsani, R.: Effect of fiber treatment on the mechanical properties of date palm fiber reinforced PP/EPDM composites. Adv. Compos. Mater. 24, 27–40 (2015). https://doi.org/10.1080/09243046.2013.871177

    Article  Google Scholar 

  105. 105.

    Aly, N.M., ElNashar, D.E.: Polyester/flax biocomposites reinforced using date palm leaves and wood flour as fillers. Int. J. Eng. Technol. 8(3), 1579–1588 (2016)

    Google Scholar 

  106. 106.

    Sharath, G.P. et al.: Effect of fiber length on the mechanical properties of coir and wild date palm reinforced epoxy composites. IJSTE-Int. J. Sci. Technol. Eng. 2(11), (2016). www.ijste.org

  107. 107.

    Neher, B., Bhuiyan, M.M.R., Kabir, H., Gafur, M.A., Qadir, M.R., Ahmed, F.: Thermal properties of palm fiber and palm fiber-reinforced ABS composite. J. Therm. Anal. Calorim. 124, 1281–1289 (2016). https://doi.org/10.1007/s10973-016-5341-x

    Article  Google Scholar 

  108. 108.

    Tahri, I., Devin, I.Z., Ruelle, J., Segovia, C., Brosse, N.: Extraction and characterization of fibers from palm tree. BioResources (2016). https://doi.org/10.15376/biores.11.3.7016-7025

    Article  Google Scholar 

  109. 109.

    Alzebdeh, K.I., Nassar, M.M., Al-Hadhrami, M.A., Al-Aamri, O., Al-Defaai, S., Al-Shuaily, S.: Characterization of mechanical properties of aligned date palm frond fiber-reinforced low density polyethylene. J. Eng. Res. 14, 115–123 (2017). https://doi.org/10.24200/tjer.vol.14iss2pp115-123

    Article  Google Scholar 

  110. 110.

    Ladhar, A., Arous, M., Kaddami, H., Ayadi, Z., Kallel, A.: Correlation between the dielectric and the mechanical behavior of cellulose nanocomposites extracted from the rachis of the date palm tree. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/258/1/012001

    Article  Google Scholar 

  111. 111.

    Benzidane, R., Sereir, Z., Bennegadi, M.L., Doumalin, P., Poilâne, C.: Morphology, static and fatigue behavior of a natural UD composite: the date palm petiole ‘wood’. Compos. Struct. 203, 110–123 (2018). https://doi.org/10.1016/j.compstruct.2018.06.122

    Article  Google Scholar 

  112. 112.

    Boukettaya, S., Alawar, A., Almaskari, F., Ben Daly, H., Abdala, A., Chatti, S.: Modeling of water diffusion mechanism in polypropylene/date palm fiber composite materials. J. Compos. Mater. 52, 2651–2659 (2018). https://doi.org/10.1177/0021998317752228

    Article  Google Scholar 

  113. 113.

    Swain, P.T.R., Das, S.N., Jena, S.P.: Manufacturing and study of thermo-mechanical behaviour of surface modified date palm leaf/glass fiber reinforced hybrid composite. Mater. Today Proc. 5, 18332–18341 (2018)

    Article  Google Scholar 

  114. 114.

    Alshabanat, M.: Morphological, thermal, and biodegradation properties of LLDPE/treated date palm waste composite buried in a soil environment. J. Saudi Chem. Soc. 23, 355–364 (2019). https://doi.org/10.1016/j.jscs.2018.08.008

    Article  Google Scholar 

  115. 115.

    Noorunnisa Khanam, P., AlMaadeed, M.A.: Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater. Des. 60, 532–539 (2014). https://doi.org/10.1016/j.matdes.2014.04.033

    Article  Google Scholar 

  116. 116.

    Sbiai, A., Maazouz, A., Fleury, E., Souterneau, H., Kaddami, H.: Short date palm tree fibers/polyepoxy composites prepared using RTM process: effect of tempo mediated oxidation of the fibers. BioResources 5(2), 672–689 (2010)

    Google Scholar 

  117. 117.

    Wazzan, A.A.: Effect of fiber orientation on the mechanical properties and fracture characteristics of date palm fiber reinforced composites. Int. J. Polym. Mater. Polym. Biomater. 54, 213–225 (2005). https://doi.org/10.1080/00914030390246379

    Article  Google Scholar 

  118. 118.

    Al-Sulaiman, F.A.: Mechanical properties of date palm fiber reinforced composites. Appl. Compos. Mater. 9, 369–377 (2002). https://doi.org/10.1023/A:1020216906846

    Article  Google Scholar 

  119. 119.

    Asadzadeh, M., Khalili, S., Eslami Farsani, R., Rafizadeh, S.: Bending properties of date palm fiber and jute fiber reinforced polymeric composite. ADMT J 5(4) (2012)

  120. 120.

    Dhakal, H., Bourmaud, A., Berzin, F., Almansour, F., Zhang, Z., Shah, D.U., et al.: Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Ind. Crops Prod. 126, 394–402 (2018). https://doi.org/10.1016/j.indcrop.2018.10.044

    Article  Google Scholar 

  121. 121.

    Masri, T., Ounis, H., Sedira, L., Kaci, A., Benchabane, A.: Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Constr. Build. Mater. 164, 410–418 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.197

    Article  Google Scholar 

  122. 122.

    Mahdi, E., Hernández, D.R., Eltai, E.O.: Effect of water absorption on the mechanical properties of long date palm leaf fiber reinforced epoxy composites. J. Biobased Mater. Bioenergy 9, 173–181 (2015). https://doi.org/10.1166/jbmb.2015.1508

    Article  Google Scholar 

  123. 123.

    Ibrahem, R.A.: Effect of date palm seeds on the tribological behaviour of polyester composites under different testing conditions. J. Mater. Sci. Eng. (2015). https://doi.org/10.4172/2169-0022.1000206

    Article  Google Scholar 

  124. 124.

    Tripathy, S., Dehury, J., Mishra, D.: A study on the effect of surface treatment on the physical and mechanical properties of date-palm stem liber embedded epoxy composites. IOP Conf. Ser. Mater. Sci. Eng. (2016). https://doi.org/10.1088/1757-899X/115/1/012036

    Article  Google Scholar 

  125. 125.

    Salih, S.I., Jasim, A.S., Hasan, A.M.: Investigation on mechanical properties of hybrid polymer composite reinforced by rice husks and date palm fibers as a construction material. J. Al-Nahrain Univ. 18, 89–97 (2015). https://doi.org/10.22401/jnus.18.3.13

    Article  Google Scholar 

  126. 126.

    Saba, N., Alothman, O.Y., Almutairi, Z., Jawaid, M., Ghori, W.: Date palm reinforced epoxy composites: tensile, impact and morphological properties. J. Mater. Res. Technol. 8, 3959–3969 (2019). https://doi.org/10.1016/j.jmrt.2019.07.004

    Article  Google Scholar 

  127. 127.

    Asim, M., Jawaid, M., Khan, A., Asiri, A.M., Malik, M.A.: Effects of date palm fibres loading on mechanical, and thermal properties of date palm reinforced phenolic composites. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.01.099

    Article  Google Scholar 

  128. 128.

    Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S.: Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010). https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  Google Scholar 

  129. 129.

    Binhussain, M.A., El-Tonsy, M.M.: Palm leave and plastic waste wood composite for out-door structures. Constr. Build. Mater. 47, 1431–1435 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.031

    Article  Google Scholar 

  130. 130.

    AlMaadeed, M.A., Nógellová, Z., Mičušík, M., Novák, I., Krupa, I.: Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Mater. Des. 53, 29–37 (2014). https://doi.org/10.1016/j.matdes.2013.05.093

    Article  Google Scholar 

  131. 131.

    Pacheco-Torgal, F., Jalali, S.: Cementitious building materials reinforced with vegetable fibres: a review. Constr. Build. Mater. 25, 575–581 (2011). https://doi.org/10.1016/j.conbuildmat.2010.07.024

    Article  Google Scholar 

  132. 132.

    Ivaskova, M., Kotes, P., Brodnan, M.: Air pollution as an important factor in construction materials deterioration in Slovak Republic. Procedia Eng. 108, 131–138 (2015). https://doi.org/10.1016/j.proeng.2015.06.128

    Article  Google Scholar 

  133. 133.

    Afroughsabet, V., Ozbakkaloglu, T.: Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 94, 73–82 (2015). https://doi.org/10.1016/j.conbuildmat.2015.06.051

    Article  Google Scholar 

  134. 134.

    Rashiddadash, P., Ramezanianpour, A.A., Mahdikhani, M.: Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Constr. Build. Mater. 51, 313–320 (2014). https://doi.org/10.1016/j.conbuildmat.2013.10.087

    Article  Google Scholar 

  135. 135.

    Kayali, O., Haque, M.N., Zhu, B.: Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cem. Concr. Compos. 25, 207–213 (2003). https://doi.org/10.1016/S0958-9465(02)00016-1

    Article  Google Scholar 

  136. 136.

    Ozerkan, N.G., Ahsan, B., Mansour, S., Iyengar, S.R.: Mechanical performance and durability of treated palm fiber reinforced mortars. Int. J. Sustain. Built. Environ. 2, 131–142 (2013). https://doi.org/10.1016/j.ijsbe.2014.04.002

    Article  Google Scholar 

  137. 137.

    Kuder, K.G., Shah, S.P.: Processing of high-performance fiber-reinforced cement-based composites. Constr. Build. Mater. 24, 181–186 (2010). https://doi.org/10.1016/j.conbuildmat.2007.06.018

    Article  Google Scholar 

  138. 138.

    Lau, A., Anson, M.: Effect of high temperatures on high performance steel fibre reinforced concrete. Cem. Concr. Res. 36, 1698–1707 (2006). https://doi.org/10.1016/j.cemconres.2006.03.024

    Article  Google Scholar 

  139. 139.

    Di Prisco, M., Plizzari, G., Vandewalle, L.: Fibre reinforced concrete: New design perspectives. Mater. Struct. Constr. 42, 1261–1281 (2009). https://doi.org/10.1617/s11527-009-9529-4

    Article  Google Scholar 

  140. 140.

    Merta, I., Tschegg, E.K.: Fracture energy of natural fibre reinforced concrete. Constr. Build. Mater. 40, 991–997 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.060

    Article  Google Scholar 

  141. 141.

    Zhou, X., Ghaffar, S.H., Dong, W., Oladiran, O., Fan, M.: Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Mater. Des. 49, 35–47 (2013). https://doi.org/10.1016/j.matdes.2013.01.029

    Article  Google Scholar 

  142. 142.

    Çomak, B., Bideci, A., Salli, B.Ö.: Effects of hemp fibers on characteristics of cement based mortar. Constr. Build. Mater. 169, 794–799 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.029

    Article  Google Scholar 

  143. 143.

    Abani, S., Hafsi, F., Kriker, A., Bali, A.: Valorisation of date palm fibres in Sahara constructions. Energy Procedia 74, 289–293 (2015). https://doi.org/10.1016/j.egypro.2015.07.608

    Article  Google Scholar 

  144. 144.

    Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A., Boudenne, A.: Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 81, 98–104 (2014). https://doi.org/10.1016/j.enbuild.2014.05.032

    Article  Google Scholar 

  145. 145.

    Vantadori, S., Carpinteri, A., Zanichelli, A.: Lightweight construction materials: mortar reinforced with date-palm mesh fibres. Theor. Appl. Fract. Mech. 100, 39–45 (2019). https://doi.org/10.1016/j.tafmec.2018.12.011

    Article  Google Scholar 

  146. 146.

    Alatshan, F., Altlomate, A.M., Mashiri, F., Alamin, W.: Effect of date palm fibers on the mechanical properties of concrete. Int. J. Sustain. Build. Technol. Urban Dev. (2017). https://doi.org/10.12972/susb.20170007

    Article  Google Scholar 

  147. 147.

    Boumhaout, M., Boukhattem, L., Hamdi, H., Benhamou, B., Ait, N.F.: Thermomechanical characterization of a bio-composite building material: mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 135, 241–250 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.217

    Article  Google Scholar 

  148. 148.

    Benaimeche, O., Carpinteri, A., Mellas, M., Ronchei, C., Scorza, D., Vantadori, S.: The influence of date palm mesh fibre reinforcement on flexural and fracture behaviour of a cement-based mortar. Compos. B 152, 292–299 (2018). https://doi.org/10.1016/j.compositesb.2018.07.017

    Article  Google Scholar 

  149. 149.

    Chennouf, N., Agoudjil, B., Boudenne, A., Benzarti, K., Bouras, F.: Hygrothermal characterization of a new bio-based construction material: concrete reinforced with date palm fibers. Constr. Build. Mater. 192, 348–356 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.089

    Article  Google Scholar 

  150. 150.

    Zanichelli, A., Carpinteri, A., Fortese, G., Ronchei, C., Scorza, D., Vantadori, S.: Contribution of date-palm fibres reinforcement to mortar fracture toughness. Procedia Struct. Integr. 13, 542–547 (2018). https://doi.org/10.1016/j.prostr.2018.12.089

    Article  Google Scholar 

  151. 151.

    Kareche, A., Agoudjil, B., Haba, B., Boudenne, A.: Study on the durability of new construction materials based on mortar reinforced with date palm fibers wastes. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00669-y

    Article  Google Scholar 

  152. 152.

    Chikhi, M., Agoudjil, B., Boudenne, A., Gherabli, A.: Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build. 66, 267–273 (2013). https://doi.org/10.1016/j.enbuild.2013.07.019

    Article  Google Scholar 

  153. 153.

    Chikhi, M.: Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy Build. 129, 589–597 (2016). https://doi.org/10.1016/j.enbuild.2016.08.034

    Article  Google Scholar 

  154. 154.

    Braiek, A., Karkri, M., Adili, A., Ibos, L., Ben, N.S.: Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 140, 268–279 (2017). https://doi.org/10.1016/j.enbuild.2017.02.001

    Article  Google Scholar 

  155. 155.

    Bellatrache, Y., Ziyani, L., Dony, A., Taki, M., Haddadi, S.: Effects of the addition of date palm fibers on the physical, rheological and thermal properties of bitumen. Constr. Build. Mater. 239, 117808 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117808

    Article  Google Scholar 

  156. 156.

    Muniandy, R., Jafariahan, H., Yunus, R., Hassim, S.: Determination of rheological properties of bio mastic asphalt. Am. J. Eng. Appl. Sci. 1, 204–209 (2008). https://doi.org/10.3844/ajeassp.2008.204.209

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratefulness for Dr. Mohamad Midani for his support and great knowledge on DPT fibres that helped in developing this review article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mizi Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Awad, S., Zhou, Y., Katsou, E. et al. A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01105-2

Download citation

Keywords

  • Phoenix dactylifera L.
  • Date palm fibres
  • Bio-composites
  • Surface treatments
  • Processing parameters