Evaluation of the Synergistic Effects from Multi-Solvents in the Transfer of Sm(III) Ions into the Supported Liquid Membrane

Abstract

The supported liquid membrane in comparison with the solvent extraction helps in the facilitation for transferring Sm(III) ions from an aqueous feed to the stripping solution. The synergistic effect in the increase of the permeability coefficient was investigated with a mixture of extractants. The synergism of D2EHPA with Cynex272 or Cyanex301 extractants increases the permeability coefficient to 23.08 × 10–6 m/s and 20.38 × 10–6 m/s, respectively. The carrier with only D2EHPA could reach the permeability coefficient of 7.75 × 10–6 m/s. The kinetic modeling based on the resistance of phases showed that there is a good agreement between the experimental data and the modeling data.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Lee, J., Hwang, T.Y., KyuKang, M., Lee, G., Cho, H.B., Kim, J., Choa, Y.H.: High-performance, cost-effective permanent nanomagnet: microstructural and magnetic properties of Fe-substituted SmCo nanofiber. Appl. Surf. Sci. 471, 273–276 (2019). https://doi.org/10.1016/j.apsusc.2018.11.217

    Article  Google Scholar 

  2. 2.

    Furlani, E.P.: Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Application. Academic Press, New York (2001)

    Google Scholar 

  3. 3.

    Akbuda, S., Candan, A., Özduran, M.: Structural, electronic, and magnetic properties of hard magnetic SmNi2Fe compound: a DFT study. J. Superconduct. Novel Magnet. (2019). https://doi.org/10.1007/s10948-019-05159-9

    Article  Google Scholar 

  4. 4.

    Gabay, A., Hadjipanayis, G.: Development of Sm-Co permanent magnets, IEEE international magnetics conference (INTERMAG), Dublin, Ireland (2017).

  5. 5.

    Rudramamba, K.S., Reddy, D.V.K., Rao, T.S., Taherunnisa, S.K., Veeraiah, N., Reddy, M.R.: Optical properties of Sm3+ doped strontium bismuth borosilicate glasses for laser applications. Optical Mater. 89, 68–79 (2019). https://doi.org/10.1016/j.optmat.2018.12.048

    Article  Google Scholar 

  6. 6.

    Sierko, E., Hempel, D., Zuzda, K., Wojtukiewicz, M.Z.: Personalized radiation therapy in cancer pain management. Cancers 11, 390 (2019). https://doi.org/10.3390/cancers11030390

    Article  Google Scholar 

  7. 7.

    Tolstopyatov, A.A., Chi-chüan, Y., Gorshkova, L.S.: Catalytic properties of samarium oxide with respect to the dehydrogenation and dehydration of alcohols and the dehydrogenation of tetralin. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science 13, 6–9 (1964). https://doi.org/10.1007/BF01179557

    Article  Google Scholar 

  8. 8.

    Florez, R., Colorado, H.A., Giraldo, H.C., Alajo, A.: Preparation and characterization of Portland cement pastes with Sm2O3 microparticle additions for neutron shielding applications. Const. Build Mater. 191, 498–506 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.019

    Article  Google Scholar 

  9. 9.

    Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., Lee, J.Y.: Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165, 2–26 (2016). https://doi.org/10.1016/j.hydromet.2016.01.035

    Article  Google Scholar 

  10. 10.

    Satpathy, S., Mishra, S.: Influence of lactic acid on the solvent extraction separation of Sm(III) and Co(II) from chloride medium using DEHPA. Sep. Sci. Technol. 54, 2907 (2018). https://doi.org/10.1080/01496395.2018.1555595

    Article  Google Scholar 

  11. 11.

    Sinha, M.K., Pramanik, S., Kumari, A., Sahu, S.K., Prasad, L.B., Jha, M.K., Yoo, K., Pandey, B.D.: Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Sep. Purif. Technol. 179, 1–12 (2017). https://doi.org/10.1016/j.seppur.2017.01.056

    Article  Google Scholar 

  12. 12.

    Van de Voorde, M., Hecke, K.V., Binnemans, K., Cardinaels, T.: Separation of samarium and europium by solvent extraction with an undiluted quaternary ammonium ionic liquid: towards high-purity medical samarium-153. RSC Adv. 8, 20077–20086 (2018). https://doi.org/10.1039/C8RA03279C

    Article  Google Scholar 

  13. 13.

    Foltova, S.S., Hoogerstraete, T.V., Banerjee, D., Binnemans, K.: Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep. Purif. Technol. 210, 209–218 (2019). https://doi.org/10.1016/j.seppur.2018.07.069

    Article  Google Scholar 

  14. 14.

    Li, X., Li, Z., Orefice, M., Binnemans, K.: Metal recovery from spent samarium-cobalt magnets using a trichloride ionic liquid. ACS Sustain. Chem. Eng. 7, 2578–2584 (2019). https://doi.org/10.1021/acssuschemeng.8b05604

    Article  Google Scholar 

  15. 15.

    Su, X., Wang, Y., Guo, X., Dong, Y., Gao, Y., Sun, X.: Recovery of Sm(III), Co(II) and Cu(II) from waste SmCo magnet by ionic liquid-based selective precipitation process. Waste Mang. 78, 992–1000 (2018). https://doi.org/10.1016/j.wasman.2018.07.004

    Article  Google Scholar 

  16. 16.

    Chen, L., Wu, Y., Dong, H., Meng, M., Li, C., Yan, Y., Chen, J.: An overview on membrane strategies for rare earths extraction and separation. Sep. Purif. Technol. 197, 70–85 (2018). https://doi.org/10.1016/j.seppur.2017.12.053

    Article  Google Scholar 

  17. 17.

    Hirai, T., Okamoto, N., Komasawa, I.: Preparation of spherical oxalate particles of rare earths in emulsion liquid membrane system. AIChE J. 44, 197–206 (1998). https://doi.org/10.1002/aic.690440121

    Article  Google Scholar 

  18. 18.

    Hammami, M., Ennigrou, D.J., Naifer, K.H., Ferid, M.: Retention of samarium ions from aqueous solutions by poly(acrylic acid)-enhanced ultrafiltration. Desalin Water Treat. 56, 2715–2722 (2014). https://doi.org/10.1080/19443994.2014.972733

    Article  Google Scholar 

  19. 19.

    Hammami, M., Ennigrou, D.J., Naifer, K.H., Ferid, M.: Recovery of samarium (III) from aqueous solutions by poly(sodium 4-styrenesulfonate) assisted-ultrafiltration. Environ. Process Sustain. Energy 35, 1091–1097 (2016). https://doi.org/10.1002/ep.12335

    Article  Google Scholar 

  20. 20.

    Pei, L., Wang, L.M., Guo, W.: Separation of trivalent samarium through facilitated stripping dispersion hollow fiber liquid membrane using P204 as mobile carrier. Chin. J. Chem. 29, 1233–1238 (2011). https://doi.org/10.1002/cjoc.201190229

    Article  Google Scholar 

  21. 21.

    Wannachod, T., Leepipatpiboon, N., Pancharoen, U., Nootong, K.: Synergistic effect of various neutral donors in D2EHPA for selective neodymium separation from lanthanide series via HFSLM. J. Ind. Eng. Chem. 20, 4152–4162 (2014). https://doi.org/10.1016/j.jiec.2014.01.014

    Article  Google Scholar 

  22. 22.

    Ramakul, P., Supajaroon, T., Prapasawat, T., Pancharoen, U., Lothongkumc, A.W.: Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane. J. Ind. Eng. Chem. 15, 224–228 (2009). https://doi.org/10.1016/j.jiec.2008.09.011

    Article  Google Scholar 

  23. 23.

    Prakorn, R., Ura, P.: Synergistic extraction and separation of mixture of lanthanum and neodymium by hollow fiber supported liquid membrane. Korean J. Chem. Eng. 20, 724–730 (2003). https://doi.org/10.1007/BF02706915

    Article  Google Scholar 

  24. 24.

    Gaikwad, A.G.: Synergetic transport of europium through a contained supported liquid membrane using trioctylamine and tributyl phosphate as carriers. Talanta 63, 917–926 (2004). https://doi.org/10.1016/j.talanta.2003.12.041

    Article  Google Scholar 

  25. 25.

    Teramoto, M., Sakuramoto, T., Koyama, T., Matsuyama, H., Miyake, Y.: Extraction of lanthanoids by liquid surfactant membranes. Sep. Sci. Technol. 21, 229–250 (1986). https://doi.org/10.1080/01496398608058375

    Article  Google Scholar 

  26. 26.

    Goto, M., Kakoi, T., Yoshii, N., Kondo, K., Nakashio, F.: Effect of synthesized surfactants in the separation of rare earth metals by liquid surfactant membranes. Ind. Eng. Chem. Res. 32, 1681–1685 (1993). https://doi.org/10.1021/ie00020a021

    Article  Google Scholar 

  27. 27.

    Fengjun, Z., Genxiang, M., Deqian,L., Yonglie, W.: Studies on extraction and mass transfer of samarium and neodymium in hollow fiber membrane(HFM) with HEH/EHP. Chin. Rare Earth. TF 803.2 (1999).

  28. 28.

    Cherkasov, R.A., Garifzyanov, A.R., Galeev, R.R., Kurnosova, N.V., Davletshin, R.R., Zakharov, S.V.: Membrane transport of metal ions with lipophilic aminomethylphosphine oxides. Russ. J. Gen. Chem. 81, 1464–1469 (2011). https://doi.org/10.1134/S1070363211070103

    Article  Google Scholar 

  29. 29.

    Gill, J.S., Marwah, U.R., Misra, B.M.: Transport of samarium(III) and uranium(VI) across a silicone-supported liquid membrane using di(2ethylhexyl)phosphoric acid and tributyl phosphate as mobile carrier. Sep. Sci. Technol. 29, 193–203 (1994). https://doi.org/10.1080/01496399408002477

    Article  Google Scholar 

  30. 30.

    Kondo, K., Hashimoto, T., Sumi, H., Matsumoto, M.: Mechanisms of samarium extraction with diisostearylphosphoric acid and its permeation through supported liquid membrane. J. Chem. Eng. Jpn. 28, 511–516 (1995). https://doi.org/10.1252/jcej.28.511

    Article  Google Scholar 

  31. 31.

    Gaikwad, A.G., Chitra, K.R., Surender, G.D., Damodaran, A.D.: Membrane solvent extraction of some rare earth elements. Chem. Biochem. Eng. Q. 17, 191–199 (2003)

    Google Scholar 

  32. 32.

    Zhang, F., Ma, J., Luo, F., Li, D., Yonglie, W.: Study on transfer and interfacial kinetics of neodymium and samarium in membrane based extraction. J. Rare Earths 20, 228–230 (2002)

    Google Scholar 

  33. 33.

    Zhang, F., Yun, Y., Lin, X., Luo, F., Li, D., Wu, Y.: On-line analysis technique and application in transfer of neodymium and samarium in the based membrane extraction. Chin. Rare Earths 22, 1–5 (2001). https://doi.org/10.1016/j.talanta.2004.01.013

    Article  Google Scholar 

  34. 34.

    Yadav, K.K., Kotekar, M.K., Singh, D.K., Kain, V., Dasgupta, K.: Parametric Optimization for Samarium Separation by Employing Hollow Fibre Membrane. Bhabha Atomic Research Centre, Mumbai (2016)

    Google Scholar 

  35. 35.

    Pei, L., Wang, L.M., Guob, W.: Stripping dispersion hollow fiber liquid membrane containing carrier PC-88A and HNO3 for the extraction of Sm3+. Chin. Chem. Lett. 23, 101–104 (2012). https://doi.org/10.1016/j.cclet.2011.09.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors are appreciative of the Islamic Azad University, South Tehran Branch, for the financial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehrnoush Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M. Evaluation of the Synergistic Effects from Multi-Solvents in the Transfer of Sm(III) Ions into the Supported Liquid Membrane. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01100-7

Download citation

Keywords

  • Sm(III) ions
  • Synergistic effect
  • Aqueous and organic resistance
  • Supported liquid membrane
  • Permeability coefficient