Depolymerization of Lignin from Extracted Solid Waste of Cupressus lusitanica Mill. Biomass Using Imidazole

Abstract

Implementation of green chemistry and biorefinery concept are needed to boost production of biomass-derived fuels, chemicals, and materials with cost-effective processing of sustainable feedstock. The use of imidazole as a novel solvent for biomass pretreatment creates an approach that helps accomplish this concept. The present work is dedicated to study the pretreatment of residual lignocellulosic biomass, namely, extracted solid waste of Cupressus lusitanica, by application of the alkaline solvent—imidazole. The pretreatment allowed obtaining cellulose- and hemicellulose-rich fractions, whereas lignin was depolymerized. Both cellulose and hemicellulose recovery were highly dependent on the reaction conditions. The highest cellulose content was obtained at 160 °C for 4 h and was 40.7 ± 0.6 wt% with a delignification yield of 65.2 ± 0.4 wt%. The effect of biomass delignification on the efficiency of enzymatic digestibility was also analyzed and it was observed a good linear relationship between the delignification yield and the glucan to glucose yield. The presence of added-value phenolic compounds from depolymerized lignin in recovered imidazole was analyzed by capillary electrophoresis and determination of total phenolic content and antioxidant activity was also performed. These compounds were tentatively identified and their structures proposed on the basis of the HPLC–MS analyzes.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Silveira, M.H.L., Morais, A.R.C., da Costa Lopes, A.M., Olekszyszen, D.N., Bogel-Łukasik, R., Andreaus, J., Pereira, R.L.: Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. Chemsuschem 8(20), 3366–3390 (2015)

    Article  Google Scholar 

  2. 2.

    Magalhães da Silva, S.P., da Costa Lopes, A.M., Roseiro, L.B., Bogel-Łukasik, R.: Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv. 3, 16040–16050 (2013). https://doi.org/10.1039/c3ra43091j

    Article  Google Scholar 

  3. 3.

    Hallett, J.P., Chambon, C.L., Chen, M., Fennell, P.S.: Efficient fractionation of lignin-and ash-rich agricultural residues following treatment with a low-cost protic ionic liquid. Front. Chem. 7, 246 (2019)

    Article  Google Scholar 

  4. 4.

    Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjoholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids: a review. Ind. Crops Prod. 32, 175–201 (2010). https://doi.org/10.1016/j.indcrop.2010.04.005

    Article  Google Scholar 

  5. 5.

    Bernardo, J.R., Gírio, F.M., Łukasik, R.M.: The effect of the chemical character of ionic liquids on biomass pre-treatment and posterior enzymatic hydrolysis. Molecules 24, 808 (2019). https://doi.org/10.3390/molecules24040808

    Article  Google Scholar 

  6. 6.

    Janesko, B.G.: Modeling interactions between lignocellulose and ionic liquids using DFT-D. Phys. Chem. Chem. Phys. 13, 11393–11401 (2011)

    Article  Google Scholar 

  7. 7.

    Kilpeläinen, I.A., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S.: Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55, 9142–9148 (2007). https://doi.org/10.1021/jf071692e

    Article  Google Scholar 

  8. 8.

    Jordan, T., Schmidt, S., Liebert, T., Heinze, T.: Molten imidazole: a starch solvent. Green Chem. 16, 1967–1973 (2014)

    Article  Google Scholar 

  9. 9.

    Kang, Y., Realff, M.J., Sohn, M., Lee, J.H., Bommarius, A.S.: An Effective Chemical Pretreatment Method for Lignocellulosic Biomass with Substituted Imidazoles. Am. Inst. Chem. Eng. 31, 23–34 (2015)

    Google Scholar 

  10. 10.

    Morais, A.R.C., Pinto, J.V., Nunes, D., Roseiro, L.B., Oliveira, M.C., Fortunato, E., Bogel-Łukasik, R.: Imidazole: prospect solvent for lignocellulosic biomass fractionation and delignification. ACS Sustain. Chem. Eng. 4, 1643–1652 (2016). https://doi.org/10.1021/acssuschemeng.5b01600

    Article  Google Scholar 

  11. 11.

    Toscan, A., Fontana, R.C., Andreaus, J., Camassola, M., Lukasik, R.M., Dillon, A.J.P.: New two-stage pretreatment for the fractionation of lignocellulosic components using hydrothermal pretreatment followed by imidazole delignification: focus on the polysaccharide valorization. Bioresour. Technol. 285, 121346 (2019)

    Article  Google Scholar 

  12. 12.

    Fockink, D.H., Andreaus, J., Ramos, L.P., Łukasik, R.M.: Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: a case study using green solvents. Renew. Energy. 145, 490–499 (2020). https://doi.org/10.1016/j.renene.2019.06.042

    Article  Google Scholar 

  13. 13.

    Toscan, A., Morais, A.R.C., Paixão, S.M., Alves, L., Andreaus, J., Camassola, M., Dillon, A.J.P., Lukasik, R.M.: Effective extraction of lignin from elephant grass using imidazole and its effect on enzymatic saccharification to produce fermentable sugars. Ind. Eng. Chem. Res. 56, 5138–5145 (2017). https://doi.org/10.1021/acs.iecr.6b04932

    Article  Google Scholar 

  14. 14.

    Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  15. 15.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass - Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden (2011)

    Google Scholar 

  16. 16.

    Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Extractives in Biomass. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  17. 17.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Ash in Biomass. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  18. 18.

    Milk and milk products - Determination of nitrogen content - Part 1: Kjeldahl principle and crude protein calculation. International Organization for Standarization (2014)

  19. 19.

    da Costa Lopes, A.M., João, K.G., Bogel-Łukasik, E., Roseiro, L.B., Bogel-Łukasik, R.: Pretreatment and fractionation of wheat straw using various ionic liquids. J. Agric. Food Chem. 61, 7874–7882 (2013). https://doi.org/10.1021/jf401980p

    Article  Google Scholar 

  20. 20.

    Selig, M., Weiss, N., Ji, Y.: Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory Analytical Procedure (LAP): Issue Date, 3/21/2008. National Renewable Energy Laboratory - NREL, Colorado 80401-3393 (2008)

  21. 21.

    Roseiro, L.B., Tavares, C.S., Roseiro, J.C., Rauter, A.P.: Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): Optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind. Crops Prod. 44, 119–126 (2013)

    Article  Google Scholar 

  22. 22.

    Özbek, H.N., Fockink, D.H., Yanık, D.K., Göğüş, F., Lukasik, R.: The green biorefinery concept for the valorisation of pistachio shell by high-pressure CO2/H2O system. J. Clean. Prod. 196, 842–851 (2018). https://doi.org/10.1016/j.jclepro.2018.06.062

    Article  Google Scholar 

  23. 23.

    Kumar, L., Chandra, R., Chung, P.A., Saddler, J.: Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresour. Technol. 101, 7827–7833 (2010)

    Article  Google Scholar 

  24. 24.

    Park, N., Kim, H.-Y., Koo, B.-W., Yeo, H., Choi, I.-G.: Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 101, 7046–7053 (2010)

    Article  Google Scholar 

  25. 25.

    Trinh, L.T.P., Lee, Y.J., Lee, J.-W., Lee, H.-J.: Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg. 81, 1–8 (2015)

    Article  Google Scholar 

  26. 26.

    Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D.: Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11, 646–655 (2009)

    Article  Google Scholar 

  27. 27.

    Garrote, G., Dominguez, H., Parajo, J.C.: Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J. Food Eng. 52, 211–218 (2002). https://doi.org/10.1016/S0260-8774(01)00108-X

    Article  Google Scholar 

  28. 28.

    Morais, A.R.C., Da Costa Lopes, A.M., Bogel-Łukasik, R.: Carbon dioxide in biomass processing: Contributions to the green biorefinery concept. Chem. Rev. 115, 3–27 (2015). https://doi.org/10.1021/cr500330z

    Article  Google Scholar 

  29. 29.

    da Costa Lopes, A.M., Lins, R.M.G., Rebelo, R.A., Lukasik, R.M.: Biorefinery approach for lignocellulosic biomass valorisation with acidic ionic liquid. Green Chem. 20, 4043–4057 (2018)

    Article  Google Scholar 

  30. 30.

    Morais, A.R.C., Matuchaki, M.D.D.J., Andreaus, J., Bogel-Lukasik, R.: A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst. Green Chem. 18, 2985–2994 (2016). https://doi.org/10.1039/c6gc00043f

    Article  Google Scholar 

  31. 31.

    Pan, X.J., Xie, D., Yu, R.W., Lam, D., Saddler, J.N.: Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Ind. Eng. Chem. Res. 46, 2609–2617 (2007). https://doi.org/10.1021/Ie061576l

    Article  Google Scholar 

  32. 32.

    García, A., González Alriols, M., Spigno, G., Labidi, J.: Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem. Eng. J. 67, 173–185 (2012). https://doi.org/10.1016/j.bej.2012.06.013

    Article  Google Scholar 

  33. 33.

    Aadil, K.R., Barapatre, A., Sahu, S., Jha, H., Tiwary, B.N.: Free radical scavenging activity and reducing power of Acacia nilotica wood lignin. Int. J. Biol. Macromol. 67, 220–227 (2014). https://doi.org/10.1016/j.ijbiomac.2014.03.040

    Article  Google Scholar 

  34. 34.

    dos Santos, P.S.B., Erdocia, X., Gatto, D.A., Labidi, J.: Characterisation of Kraft lignin separated by gradient acid precipitation. Ind. Crops Prod. 55, 149–154 (2014)

    Article  Google Scholar 

  35. 35.

    García, A., Toledano, A., Andrés, M.Á., Labidi, J.: Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem. 45, 935–940 (2010)

    Article  Google Scholar 

  36. 36.

    Vinardell, M.P., Ugartondo, V., Mitjans, M.: Potential applications of antioxidant lignins from different sources. Ind. Crops Prod. 27, 220–223 (2008)

    Article  Google Scholar 

  37. 37.

    Dizhbite, T., Telysheva, G., Jurkjane, V., Viesturs, U.: Characterization of the radical scavenging activity of lignins––natural antioxidants. Bioresour. Technol. 95, 309–317 (2004)

    Article  Google Scholar 

  38. 38.

    Ugartondo, V., Mitjans, M., Vinardell, M.P.: Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 99, 6683–6687 (2008)

    Article  Google Scholar 

  39. 39.

    Owen, B.C., Haupert, L.J., Jarrell, T.M., Marcum, C.L., Parsell, T.H., Abu-Omar, M.M., Bozell, J.J., Black, S.K., Kenttämaa, H.I.: High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal. Chem. 84, 6000–6007 (2012)

    Article  Google Scholar 

  40. 40.

    Banoub, J.H., Benjelloun-Mlayah, B., Ziarelli, F., Joly, N., Delmas, M.: Elucidation of the complex molecular structure of wheat straw lignin polymer by atmospheric pressure photoionization quadrupole time-of-flight tandem mass spectrometry. Rapid. Commun. Mass. Spectrom. 21, 2867–2888 (2007)

    Article  Google Scholar 

  41. 41.

    Morreel, K., Kim, H., Lu, F., Dima, O., Akiyama, T., Vanholme, R., Niculaes, C., Goeminne, G., Inze, D., Messens, E.: Mass spectrometry-based fragmentation as an identification tool in lignomics. Anal. Chem. 82, 8095–8105 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was done using Biomass and Bioenergy Research Infrastructure (BBRI)- LISBOA-01-0145-FEDER-022059, supported by Operational Program for Competitiveness and Internationalization (PORTUGAL2020), by Lisbon Portugal Regional Operational Program (Lisboa2020) and by North Portugal Regional Operational Program (Norte2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Furthermore, this research was supported by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) through grant IF/00471/2015 (RML), ID/QUI/00100/2019 and (Lisboa-01-0145-FEDER-022125-IST/RNEM). The authors also wish to thank Maria do Céu Penedo and Belina Ribeiro (UB, LNEG) for assistance in the HPLC analyzes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafał M. Łukasik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, P.M.A., Bernardo, J.R., Oliveira, M.C. et al. Depolymerization of Lignin from Extracted Solid Waste of Cupressus lusitanica Mill. Biomass Using Imidazole. Waste Biomass Valor 12, 1341–1355 (2021). https://doi.org/10.1007/s12649-020-01087-1

Download citation

Keywords

  • Lignocellulosic biomass
  • Cupressus lusitanica
  • Imidazole
  • Pretreatment
  • Delignification
  • Enzymatic hydrolysis