Olive cake and leaf extracts as valuable sources of antioxidant and antimicrobial compounds: a comparative study

Abstract

Purpose

Aiming to exploit the remediation of olive cake and leaves, a comparative study between these extracts from the same trees has been carried out to explore them as a source of bioactive compounds with added value.

Methods

Olive cake (OCE) and leaf (OLE) methanolic extracts were chemically characterized by UPLC-QTOF-MS, and tested for their in vitro antimicrobial activity using a broth microdilution method. The antioxidant activity was evaluated using the DPPH scavenging, ferric reducing-antioxidant power and iron chelation assays.

Results

Our results demonstrated that Gram-positive bacteria were more sensitive to the extracts tested than Gram-negative bacteria, with the exception of Yersinia enterocolitica and Campylobacter jejuni. OLE have higher amounts of ash, carbohydrates, total phenolic content and flavonoids than OCE. UPLC-ESI-TOF-MS allowed the putative identification of 48 and 45 compounds in OLE and OCE, respectively, with three newly identified compounds in OLE. OLE had the highest antioxidant activity based on DPPH, ferrozin and FRP.

Conclusion

This study provides novel information on the presence of bioactive compounds, antioxidant and antibacterial capacity of Olea europaea L. leaf and cake extracts, which can lead to the use of these by-products as sources of natural-based bioactive compounds suitable for numerous applications.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Boudhrioua, N., Bahloul, N., Slimen, I.B., Kechaou, N.: Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind. Crops Prod. 9, 412–419 (2008). https://doi.org/10.1016/j.indcrop.2008.08.001

    Article  Google Scholar 

  2. 2.

    Pereira, A.P., Ferreira, I.C., Marcelino, F., Valentão, P., Andrade, P.B., Seabra, R., Estevinho, L., Bento, A., Pereira, J.A.: Phenolic compounds and antimicrobial activity of olive (Olea europaea L. cv. Cobrançosa) leaves. Molecules 12, 1153–1162 (2007). https://doi.org/10.3390/12051153

    Article  Google Scholar 

  3. 3.

    Nunes, M.A., Costa, A.S.G., Bessada, S., Santos, J., Puga, H., Alves, R.C., Freitas, V., Oliveira, M.B.P.P.: Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid- and water-soluble components. Sci. Total Environ. 644, 229–236 (2018). https://doi.org/10.1016/J.SCITOTENV.2018.06.350

    Article  Google Scholar 

  4. 4.

    Servili, M., Esposto, S., Veneziani, G., Urbani, S., Taticchi, A., Di Maio, I., Selvaggini, R., Sordini, B., Montedoro, G.: Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food Chem. 124, 1308–1315 (2011). https://doi.org/10.1016/J.FOODCHEM.2010.07.042

    Article  Google Scholar 

  5. 5.

    Sordini, B., Veneziani, G., Servili, M., Esposto, S., Selvaggini, R., Lorefice, A., Taticchi, A.: A quanti-qualitative study of a phenolic extract as a natural antioxidant in the frying processes. Food Chem. 279, 426–434 (2019). https://doi.org/10.1016/J.FOODCHEM.2018.12.029

    Article  Google Scholar 

  6. 6.

    Esposto, S., Taticchi, A., Di Maio, I., Urbani, S., Veneziani, G., Selvaggini, R., Sordini, B., Servili, M.: Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem. 176, 184–192 (2015). https://doi.org/10.1016/J.FOODCHEM.2014.12.036

    Article  Google Scholar 

  7. 7.

    Morvová, M., Onderka, M., Morvová, M., Morva, I., Chudoba, V.: Pyrolysis of olive mill waste with on-line and ex-post analysis. Waste Biomass Valoriz. 10, 511–520 (2019). https://doi.org/10.1007/s12649-017-0126-4

    Article  Google Scholar 

  8. 8.

    Nefzaoui, A.: Valorisation des sous-produits de l’olivier. In: Options Méditerranéenes: Série A. Séminaires Méditerranéens. pp. 101–108 (1991)

  9. 9.

    Ghanbari, R., Anwar, F., Alkharfy, K.M., Gilani, A.H., Saari, N.: Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review. Int. J. Mol. Sci. 13, 3291–3340 (2012). https://doi.org/10.3390/ijms13033291

    Article  Google Scholar 

  10. 10.

    Roila, R., Branciari, R., Ranucci, D., Ortenzi, R., Urbani, S., Servili, M., Valiani, A.: Antimicrobial activity of olive mill wastewater extract against Pseudomonas fluorescens isolated from Mozzarella cheese. Ital. J. Food Saf. 5, 5760–5765 (2016). https://doi.org/10.4081/ijfs.2016.5760

    Article  Google Scholar 

  11. 11.

    Carraro, L., Fasolato, L., Montemurro, F., Martino, M.E., Balzan, S., Servili, M., Novelli, E., Cardazzo, B.: Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microb. Biotechnol. 7, 265–275 (2014). https://doi.org/10.1111/1751-7915.12119

    Article  Google Scholar 

  12. 12.

    Kiritsakis, K., Goula, A.M., Adamopoulos, K.G., Gerasopoulos, D.: Valorization of olive leaves: spray drying of olive leaf extract. Waste Biomass Valoriz. 9, 619–633 (2018). https://doi.org/10.1007/s12649-017-0023-x

    Article  Google Scholar 

  13. 13.

    Zoric, N., Kopjar, N., Kraljic, K., Orsolic, N., Tomic, S., Kosalec, I.: Olive leaf extract activity against Candida albicans and C. dubliniensis—the in vitro viability study. ACTA Pharm. 66, 411–421 (2016). https://doi.org/10.1515/acph-2016-0033

    Article  Google Scholar 

  14. 14.

    Sweedan, E.G., Al-Haidari, A.M.D., Magemand, A.M., Almohsen, M.A.: Antimicrobial and antibiofilm activities of alcoholic extract of olive leaves (olea europaea) against pathogenic bacteria. Biosci. Res. 16, 367–374 (2019)

    Google Scholar 

  15. 15.

    Liu, Y., McKeever, L.C., Malik, N.S.A.: Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Front. Microbiol. 8, 113–121 (2017). https://doi.org/10.3389/fmicb.2017.00113

    Article  Google Scholar 

  16. 16.

    Kuley, E., Durmus, M., Balikci, E., Ucar, Y., Regenstein, J.M., Özoğul, F.: Fish spoilage bacterial growth and their biogenic amine accumulation: inhibitory effects of olive by-products. Int. J. Food Prop. 20, 1029–1043 (2017). https://doi.org/10.1080/10942912.2016.1193516

    Article  Google Scholar 

  17. 17.

    Leouifoudi, I., Harnafi, H., Zyad, A.: Olive mill waste extracts: polyphenols content, antioxidant, and antimicrobial activities. Adv. Pharmacol. Sci. 2015, 1–11 (2015). https://doi.org/10.1155/2015/714138

    Article  Google Scholar 

  18. 18.

    Khalifa, I., Barakat, H., El-Mansy, H.A., Soliman, S.A.: Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packag. Shelf Life. 9, 10–19 (2016). https://doi.org/10.1016/j.fpsl.2016.05.006

    Article  Google Scholar 

  19. 19.

    AOAC Official Method: Crude Fat in Feeds, Cereal Grains, and Forges (2003)

  20. 20.

    Chow, P.A.K.S., Landhäusser, S.M.: A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 24, 1129–1136 (2004)

    Article  Google Scholar 

  21. 21.

    Oomah, B.D., Corbé, A., Balasubramanian, P.: Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J. Agric. Food Chem. 58, 8225–8230 (2010). https://doi.org/10.1021/jf1011193

    Article  Google Scholar 

  22. 22.

    Škerget, M., Kotnik, P., Hadolin, M., Hraš, A.R., Simonič, M., Knez, Ž.: Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89, 191–198 (2005). https://doi.org/10.1016/j.foodchem.2004.02.025

    Article  Google Scholar 

  23. 23.

    Lamaison, J.L.C., Carnet, A.: Teneurs en Principaux Flavonoides des fleurs de Crataegus Monogyna Jacq et de Crataegus Laevigata (Poiret D. C) en Fonction de la Vegetation. Pharm. Acta Helv. 65, 315–320 (1990)

    Google Scholar 

  24. 24.

    Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  25. 25.

    Bourgou, S., Ksouri, R., Bellila, A., Skandrani, I., Falleh, H.: Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes Rendum Biol. 331, 48–55 (2008). https://doi.org/10.1016/j.crvi.2007.11.001

    Article  Google Scholar 

  26. 26.

    Oyaizu, M.: Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44, 307–315 (1986). https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  Google Scholar 

  27. 27.

    Standards, N.C.C.L.: M2-A8, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 8th edn. (2005)

  28. 28.

    Standards, N.C.C.L.: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically—Sixth Edition: Approved Standard M7-A6. Natl. Comm. Clin. Lab. Stand. Pa. (2003)

  29. 29.

    Alhamad, M.N., Rababah, T.M., Al-u’datt, M., Ereifej, K., Esoh, R., Feng, H., Yang, W.: The physicochemical properties, total phenolic, antioxidant activities, and phenolic profile of fermented olive cake. Arab. J. Chem. 10, 136–140 (2017). https://doi.org/10.1016/J.ARABJC.2012.07.002

    Article  Google Scholar 

  30. 30.

    Portarena, S., Baldacchini, C., Brugnoli, E.: Geographical discrimination of extra-virgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis. Food Chem. 215, 1–6 (2017). https://doi.org/10.1016/j.foodchem.2016.07.135

    Article  Google Scholar 

  31. 31.

    Martín García, A.I., Moumen, A., Yáñez Ruiz, D.R., Molina Alcaide, E.: Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 107, 61–74 (2003). https://doi.org/10.1016/S0377-8401(03)00066-X

    Article  Google Scholar 

  32. 32.

    Guinda, Á., Castellano, J.M., Santos-Lozano, J.M., Delgado-Hervás, T., Gutiérrez-Adánez, P., Rada, M.: Determination of major bioactive compounds from olive leaf. LWT Food Sci. Technol. 64, 431–438 (2015). https://doi.org/10.1016/J.LWT.2015.05.001

    Article  Google Scholar 

  33. 33.

    Rodrigues, F., Pimentel, F.B., Oliveira, M.B.P.P.: Olive by-products: challenge application in cosmetic industry. Ind. Crops Prod. 70, 116–124 (2015). https://doi.org/10.1016/J.INDCROP.2015.03.027

    Article  Google Scholar 

  34. 34.

    Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, R.P., Saraiva, J.A., Boussetta, N., Grimi, N., Barba, F.J.: Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: non-conventional methods for the recovery of high-added value compounds. Trends Food Sci. Technol. 45, 296–310 (2015). https://doi.org/10.1016/J.TIFS.2015.07.003

    Article  Google Scholar 

  35. 35.

    Alu’datt, M.H., Alli, I., Ereifej, K., Alhamad, M., Al-Tawaha, A.R., Rababah, T.: Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 123, 117–122 (2010). https://doi.org/10.1016/J.FOODCHEM.2010.04.011

    Article  Google Scholar 

  36. 36.

    Botsoglou, E., Govaris, A., Christaki, E., Botsoglou, N.: Effect of dietary olive leaves and/or α-tocopheryl acetate supplementation on microbial growth and lipid oxidation of turkey breast fillets during refrigerated storage. Food Chem. 121, 17–22 (2010). https://doi.org/10.1016/J.FOODCHEM.2009.11.083

    Article  Google Scholar 

  37. 37.

    Zaidi, F., Hassissene, N., Allouache, M., Kichou, M., Ourdani, S., Rezki, K., Bellal, M.M., Grongnet, J.F., Youyou, A.: Les composés phénoliques, facteur limitantdu grignon d’olive chez les ruminants. Rev. Méd Vét. 160, 67–73 (2009)

    Google Scholar 

  38. 38.

    Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M., Hammami, M.: The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crops Prod. 38, 146–152 (2012)

    Article  Google Scholar 

  39. 39.

    Talhaoui, N., Taamalli, A., Gómez-Caravaca, A.M., Fernández-Gutiérrez, A., Segura-Carretero, A.: Phenolic compounds in olive leaves: analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 77, 92–108 (2015). https://doi.org/10.1016/J.FOODRES.2015.09.011

    Article  Google Scholar 

  40. 40.

    Benavente-García, O., Castillo, J., Lorente, J., Ortuño, A., Del Rio, J.A.: Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 68, 457–462 (2000). https://doi.org/10.1016/S0308-8146(99)00221-6

    Article  Google Scholar 

  41. 41.

    Taamalli, A., Arráez-Román, D., Barrajón-Catalán, E., Ruiz-Torres, V., Pérez-Sánchez, A., Herrero, M., Ibañez, E., Micol, V., Zarrouk, M., Segura-Carretero, A., Fernández-Gutiérrez, A.: Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 50, 1817–1825 (2012). https://doi.org/10.1016/J.FCT.2012.02.090

    Article  Google Scholar 

  42. 42.

    Benavente-Garcı́a, O., Castillo, J., Lorente, J., Ortuño, A., Del Rio, J.: Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 68, 457–462 (2000). https://doi.org/10.1016/S0308-8146(99)00221-6

    Article  Google Scholar 

  43. 43.

    Moudache, M., Colon, M., Nerin, C., Zaidi, F.: Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 212, 521–527 (2016). https://doi.org/10.1016/j.foodchem.2016.06.001

    Article  Google Scholar 

  44. 44.

    Jemai, H., Bouaziz, M., Fki, I., El Feki, A., Sayadi, S.: Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem. Biol. Interact. 176, 88–98 (2008). https://doi.org/10.1016/j.cbi.2008.08.014

    Article  Google Scholar 

  45. 45.

    Bouaziz, M., Sayadi, S.: Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 107, 497–504 (2005). https://doi.org/10.1002/ejlt.200501166

    Article  Google Scholar 

  46. 46.

    Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.-C., Lorquin, J., Delattre, M., Simon, J.-L., Asther, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75, 501–507 (2001). https://doi.org/10.1016/S0308-8146(01)00227-8

    Article  Google Scholar 

  47. 47.

    Abaza, L., Ben Youssef, N., Manai, H., Mahjoub Haddada, F., Methenni, K., Zarrouk, M., Zarrouk, M.: Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 62, 96–104 (2011). https://doi.org/10.3989/gya.044710

    Article  Google Scholar 

  48. 48.

    Ferreira, I.C.F.R., Barros, L., Soares, M.E., Bastos, M.L., Pereira, J.A.: Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chem. 103, 188–195 (2007). https://doi.org/10.1016/J.FOODCHEM.2006.08.006

    Article  Google Scholar 

  49. 49.

    Amro, B., Aburjai, T., Al-Khalil, S.: Antioxidative and radical scavenging effects of olive cake extract. Fitoterapia 73, 456–461 (2002). https://doi.org/10.1016/S0367-326X(02)00173-9

    Article  Google Scholar 

  50. 50.

    Jurmanovic, S., Jug, M., Safner, T., Radic, K., Domijan, A.-M., Pedisic, S., Simic, S., Jablan, J., Cepo, D.V.: Utilization of olive pomace as a source of polyphenols: optimization of microwave-assisted extraction and characterization of spray-dried extract. J. Food Nutr. Res. 58, 51–62 (2019)

    Google Scholar 

  51. 51.

    Kilcher, S., Loessner, M.J., Klumpp, J.: Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J. Bacteriol. 192, 5441–5453 (2010). https://doi.org/10.1128/JB.00709-10

    Article  Google Scholar 

  52. 52.

    EFSA: The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 16, e05500 (2018). https://doi.org/10.2903/j.efsa.2018.5500

    Article  Google Scholar 

  53. 53.

    Djenane, D., Yangüela, J., Derriche, F., Bouarab, L.: Utilisation des composés de feuilles d ’ olivier comme agents antimicrobiens; application pour la conservation de la viande fraîche de dinde. Nat. Technol. 7, 53–61 (2012)

    Google Scholar 

  54. 54.

    Sudjana, A.N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Riley, T.V., Hammer, K.A.: Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents. 33, 461–463 (2009). https://doi.org/10.1016/j.ijantimicag.2008.10.026

    Article  Google Scholar 

  55. 55.

    Gumgumjee, N.M., Hajar, A.S.: Antimicrobial activities and phytochemical properties of Saudi Olea europaea subsp. cuspidata. Life Sci. J. 11, 232–237 (2014)

    Google Scholar 

  56. 56.

    Ali-Shtayeh, M.S., Yaghmour, R.M.R., Faidi, Y.R., Salem, K., Al-Nuri, M.A.: Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 60, 265–271 (1998). https://doi.org/10.1016/S0378-8741(97)00153-0

    Article  Google Scholar 

  57. 57.

    Barchan, A., Bakkali, M., Arakrak, A., Laglaoui, A.: Effet antibact??rien et anti-biofilm de trois esp??ces de Mentha : Mentha spicata Mentha pulegium et Mentha piperita. Phytotherapie. 14, 88–96 (2016). https://doi.org/10.1007/s10298-015-0970-y

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the University Abderahman Mira Bejaia, Algérie for providing an internship grant to Messaad Moudache. Filomena Silva acknowledged a post-doctoral fellowship (SFRH/BPD/79250/2011) from Fundação para a Ciência e Tecnologia within the scope of QREN—POPH—Advanced Formation programs co-funded by Fundo Social Europeu and MEC. Additional funding was also provided by the Ministerio de Economía, Industria y Competitividad (AGL-2015-67362-P) and by the Gobierno de Aragón and Fondo Social Europeo for the financial help to GUIA Group (T53_17R).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Filomena Silva.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moudache, M., Silva, F., Nerín, C. et al. Olive cake and leaf extracts as valuable sources of antioxidant and antimicrobial compounds: a comparative study. Waste Biomass Valor 12, 1431–1445 (2021). https://doi.org/10.1007/s12649-020-01080-8

Download citation

Keywords

  • Olive leaf
  • Olive cake
  • UPLC-QTOF-MS
  • Antimicrobial activity
  • Antioxidant activity