Desiccation Cracks Mitigation Using Biomass Derived Carbon Produced from Aquatic Species in South China Sea

Abstract

Greenhouse gasses generated from the degradation of solid waste pass through landfill covers and participate in climate change. The formation of desiccation cracks in surface soil leads to direct interaction of greenhouse gasses into the atmosphere. In current study, attempts were made to reduce crack damage and water evaporation of a sandy soil amended with intrusive aquatic biomass derived carbon (water hyacinth and dry algae) also known as biochar. The results show that, the addition of water hyacinth biochar (WHB) and algae biochar (AB) reduced the evaporation rate of densely compacted soil and increases the water retention capacity of soil at 5% and 10% application rate. Furthermore, WHB produced at high temperature has more potential in reducing cracks than that produced at lower temperature. WHB showed better performance than AB at any temperature (i.e. 300 °C, 400 °C and 700 °C) due to its highly porous structure. The current study concludes that biochars from aquatic weeds can be utilized for soil remediation (i.e., minimizing cracking and evaporation rate), which is useful in both waste management and agricultural applications.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G.: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202, 183–191 (2013)

    Google Scholar 

  2. 2.

    Abrol, V., Ben-Hur, M., Verheijen, F.G.A., Keizer, J.J., Martins, M.A.S., Tenaw, H., Graber, E.R.: Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. J. Soils Sedim. 16(12), 2709–2719 (2016)

    Google Scholar 

  3. 3.

    Ajayi, A.E., Rainer, H.: Biochar-induced changes in soil resilience: Effects of soil texture and biochar dosage. Pedosphere 27(2), 236–247 (2017)

    Google Scholar 

  4. 4.

    Armstrong, D., Cotching, W., Bastick, C.: Assessing your soil resources for irrigation. https://www.dpipwe.tas.gov.au/inter.nsf/WebPages/JMUY-5FJVP7?open#CourseMaterial (2001)

  5. 5.

    Barnes, R.T., Gallagher, M.E., Masiello, C.A., Liu, Z., Dugan, B.: Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 9(9), e108340 (2014)

    Google Scholar 

  6. 6.

    Basso, A.S., Miguez, F.E., Laird, D.A., Horton, R., Westgate, M.: Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 5(2), 132–143 (2013)

    Google Scholar 

  7. 7.

    Bird, M.I., Wurster, C.M., de Paula Silva, P.H., Bass, A.M., De Nys, R.: Algal biochar–production and properties. Bioresour. Technol. 102(2), 1886–1891 (2011)

    Google Scholar 

  8. 8.

    Blackwell, P., Riethmuller, G., Collins, M.: Biochar application to soil. Biochar Environ. Manag. 1, 207–226 (2009)

    Google Scholar 

  9. 9.

    Boddu, R., Hong, M., Deng, Y., Chen, F., Garg, A., Bordoloi, S., Kamchoom, V.: Influence of physical and biochemical composition of three cellulose fibers on cracking of soil. In: The International Congress on Environmental Geotechnics, pp. 348–355. Springer (2018).

  10. 10.

    Bolt, G.H., Miller, R.D.: Calculation of total and component potentials of water in soil. EOS Trans. Am. Geophys. Union 39(5), 917–928 (1958)

    Google Scholar 

  11. 11.

    Bordoloi, S., Garg, A., Sreedeep, S., Lin, P., Mei, G.: Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour. Technol. 263, 665–677 (2018)

    Google Scholar 

  12. 12.

    Bordoloi, S., Gopal, P., Boddu, R., Wang, Q., Cheng, Y.-F., Garg, A., Sreedeep, S.: Soil-biochar-water interactions: role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils. J. Clean. Prod. 210, 847–859 (2019)

    Google Scholar 

  13. 13.

    Brantley, K.E., Brye, K.R., Savin, M.C., Longer, D.E.: Biochar source and application rate effects on soil water retention determined using wetting curves. Open J. Soil Sci. 5(01), 1 (2015)

    Google Scholar 

  14. 14.

    Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D.: Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 154, 1–13 (2015)

    Google Scholar 

  15. 15.

    Corte, A., Higashi, A.: Experimental research on desiccation cracks in soil. Cold Regions Research and Engineering Lab Hanover NH (1964)

  16. 16.

    Das, O., Sarmah, A.K.: The love–hate relationship of pyrolysis biochar and water: a perspective. Sci. Total Environ. 512, 682–685 (2015)

    Google Scholar 

  17. 17.

    Das, O., Sarmah, A.K., Bhattacharyya, D.: Structure–mechanics property relationship of waste derived biochars. Sci. Total Environ. 538, 611–620 (2015)

    Google Scholar 

  18. 18.

    Denef, K., Six, J., Paustian, K., Merckx, R.: Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry–wet cycles. Soil Biol. Biochem. 33(15), 2145–2153 (2001). https://doi.org/10.1016/S0038-0717(01)00153-5

    Article  Google Scholar 

  19. 19.

    Gadi, V.K., Singh, S.R., Li, J., Song, L., Zhu, H., Garg, A., Sreedeep, S.: Modeling soil-crack–water–atmospheric interactions: a novel root water uptake approach to simulate the evaporation through cracked soil and experimental validation. Geotech. Geol. Eng. 38(1), 935–946 (2020)

    Google Scholar 

  20. 20.

    Garg, A., Bordoloi, S., Ni, J., Cai, W., Maddibiona, P.G., Mei, G., Lin, P.: Influence of biochar addition on gas permeability in unsaturated soil. Géotech. Lett. 9(1), 66–71 (2019)

    Google Scholar 

  21. 21.

    Garg, A., Huang, H., Kushvaha, V., Madhushri, P., Kamchoom, V., Wani, I., Zhu, H.-H.: Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys. 68(1), 207–217 (2020)

    Google Scholar 

  22. 22.

    Gibson, I., Amies, C.: Data normalization techniques. Google Patents (2001)

  23. 23.

    Gopal, P., Bordoloi, S., Ratnam, R., Lin, P., Cai, W., Buragohain, P., Sreedeep, S.: Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys. 67(1), 231–246 (2019)

    Google Scholar 

  24. 24.

    GuhaRay, A., Guoxiong, M., Sarkar, A., Bordoloi, S., Garg, A., Pattanayak, S.: Geotechnical and chemical characterization of expansive clayey soil amended by biochar derived from invasive weed species Prosopis juliflora. Innov. Infrastruct. Solut. 4(1), 44 (2019). https://doi.org/10.1007/s41062-019-0231-2

    Article  Google Scholar 

  25. 25.

    Jha, A.K., Sharma, C., Singh, N., Ramesh, R., Purvaja, R., Gupta, P.K.: Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites. Chemosphere 71(4), 750–758 (2008)

    Google Scholar 

  26. 26.

    Julina, M., Thyagaraj, T.: Combined effects of wet-dry cycles and interacting fluid on desiccation cracks and hydraulic conductivity of compacted clay. Eng. Geol. 267(January), 105505 (2020). https://doi.org/10.1016/j.enggeo.2020.105505

    Article  Google Scholar 

  27. 27.

    Kim, T.-H., Kim, T.-H., Kang, G.-C., Ge, L.: Factors influencing crack-induced tensile strength of compacted soil. J. Mater. Civ. Eng. 24(3), 315–320 (2012)

    Google Scholar 

  28. 28.

    Kodikara, J.K., Barbour, S.L., Fredlund, D.G.: Desiccation cracking of soil layers. Unsatur. Soils for Asia 90(5809), 139 (2000)

    Google Scholar 

  29. 29.

    Kumar, H., Ganesan, S.P., Bordoloi, S., Sreedeep, S., Lin, P., Mei, G., Sarmah, A.K.: Erodibility assessment of compacted biochar amended soil for geo-environmental applications. Sci. Total Environ. 672, 698–707 (2019)

    Google Scholar 

  30. 30.

    Kumar, H., Cai, W., Lai, J., Chen, P., Ganesan, S. P., Bordoloi, S., Mei, G.: Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars. J. Soils Sedim. 1–14 (2020)

  31. 31.

    Lawrinenko, M., Laird, D.A., Johnson, R.L., Jing, D.: Accelerated aging of biochars: impact on anion exchange capacity. Carbon 103, 217–227 (2016)

    Google Scholar 

  32. 32.

    Lehmann, J, Joseph, S.: Biochar for Environmental Management: Science and Technology; Earthscan: London, pp. 2–3 (2009)

  33. 33.

    Lehmann, J., Gaunt, J., Rondon, M.: Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change 11(2), 403–427 (2006)

    Google Scholar 

  34. 34.

    Liu, C., Wang, H., Tang, X., Guan, Z., Reid, B.J., Rajapaksha, A.U., Sun, H.: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ. Sci. Pollut. Res. 23(2), 995–1006 (2016)

    Google Scholar 

  35. 35.

    Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M.: Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 12(6), e0179079 (2017)

    Google Scholar 

  36. 36.

    Liu, J., Ganesan, S.P., Li, X., Garg, A., Singhal, A.: Dynamics of biochar-silty clay interaction using in-house fabricated cyclic loading apparatus: a case study of Coastal Clay and Novel Peach Biochar from the Qingdao Region of China. Sustainability 12(7), 2599 (2020). https://doi.org/10.3390/su12072599

    Article  Google Scholar 

  37. 37.

    Lou, X.F., Nair, J.: The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour. Technol. 100(16), 3792–3798 (2009)

    Google Scholar 

  38. 38.

    Lu, S.-G., Sun, F.-F., Zong, Y.-T.: Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). CATENA 114, 37–44 (2014)

    Google Scholar 

  39. 39.

    Manyà, J.J.: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46(15), 7939–7954 (2012)

    Google Scholar 

  40. 40.

    Mikha, M.M., Rice, C.W., Milliken, G.A.: Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 37(2), 339–347 (2005). https://doi.org/10.1016/j.soilbio.2004.08.003

    Article  Google Scholar 

  41. 41.

    Mollinedo, J., Schumacher, T.E., Chintala, R.: Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J. Anal. Appl. Pyrol. 114, 100–108 (2015)

    Google Scholar 

  42. 42.

    Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Busscher, W.J.: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195–206 (2009)

    Google Scholar 

  43. 43.

    Oleszczuk, P., Ćwikła-Bundyra, W., Bogusz, A., Skwarek, E., Ok, Y.S.: Characterization of nanoparticles of biochars from different biomass. J. Anal. Appl. Pyrol. 121, 165–172 (2016)

    Google Scholar 

  44. 44.

    Prakash, A., Bordoloi, S., Hazra, B., Garg, A., Sreedeep, S., Wang, Q.: Probabilistic analysis of soil suction and cracking in fibre-reinforced soil under drying–wetting cycles in India. Environ. Geotech. 6(4), 188–203 (2019)

    Google Scholar 

  45. 45.

    Shafie, S.T., Salleh, M.A.M., Hang, L.L., Rahman, M., Ghani, W.: Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J. Purity Util. React. Environ. 1(6), 293–307 (2012)

    Google Scholar 

  46. 46.

    Singh, G., Lakhi, K.S., Sil, S., Bhosale, S.V, Kim, I., Albahily, K., Vinu, A.: Biomass derived porous carbon for CO2 capture. Carbon (2019)

  47. 47.

    Sohi, S.P.: Carbon storage with benefits. Science 338(6110), 1034–1035 (2012)

    Google Scholar 

  48. 48.

    Song, W.K., Cui, Y.J.: Modelling of water evaporation from cracked clayey soil. Eng. Geol. 266, 105465 (2020)

    Google Scholar 

  49. 49.

    Song, H., Wang, J., Garg, A., Lin, X., Zheng, Q., Sharma, S.: Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: comparison with conventional biochars and clinoptilolite. Sustainability 11(24), 7136 (2019)

    Google Scholar 

  50. 50.

    Sreedeep, S., Gadi, V.K., Bordoloi, S., Saha, A., Kumar, H., Hazra, B., Garg, A.: Sustainable geotechnics: a bio-geotechnical perspective. In: Frontiers in Geotechnical Engineering, pp. 313–331 (2019). https://doi.org/10.1007/978-981-13-5871-5_15

  51. 51.

    Sun, F., Lu, S.: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 177(1), 26–33 (2014)

    Google Scholar 

  52. 52.

    Tang, C., Shi, B., Liu, C., Zhao, L., Wang, B.: Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Eng. Geol. 101(3–4), 204–217 (2008)

    Google Scholar 

  53. 53.

    Villamagna, A.M., Murphy, B.R.: Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw. Biol. 55(2), 282–298 (2010)

    Google Scholar 

  54. 54.

    Wong, J.T.F., Chen, Z., Chen, X., Ng, C.W.W., Wong, M.H.: Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. J. Soils Sedim. 17(3), 590–598 (2017)

    Google Scholar 

  55. 55.

    Yoshizawa, S.: Biochar for carbon storage in the soil and for soil improvement. Carbon 100(104), 263 (2016)

    Google Scholar 

  56. 56.

    Yu, O.-Y., Raichle, B., Sink, S.: Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 4(1), 44 (2013)

    Google Scholar 

  57. 57.

    Yu, K.L., Lau, B.F., Show, P.L., Ong, H.C., Ling, T.C., Chen, W.-H., Chang, J.-S.: Recent developments on algal biochar production and characterization. Bioresour. Technol. 246, 2–11 (2017)

    Google Scholar 

  58. 58.

    Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani, N.R., McHenry, M.P.: Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 181, 817–831 (2016)

    Google Scholar 

  59. 59.

    Zhao, B., Santamarina, J.C.: Desiccation crack formation beneath the surface. Géotechnique 70(2), 181–186 (2020)

    Google Scholar 

  60. 60.

    Zong, Y., Chen, D., Lu, S.: Impact of biochars on swell–shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J. Plant Nutr. Soil Sci. 177(6), 920–926 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge National Natural Science Foundation (NSFC) Grant (Grant No. 41907252) for the support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ankit Garg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mei, G., Kumar, H., Huang, H. et al. Desiccation Cracks Mitigation Using Biomass Derived Carbon Produced from Aquatic Species in South China Sea. Waste Biomass Valor 12, 1493–1505 (2021). https://doi.org/10.1007/s12649-020-01057-7

Download citation

Keywords

  • Desiccation cracks
  • Aquatic biochar
  • Biochar amended soil
  • Algae biochar
  • Water hyacinth biochar