Abstract
Purpose
To isolate, identify and characterize an anaerobic strain from in natura CPW, in relation to the consumption of different carbon sources, growth kinetics and H2 production after bioaugmentation.
Methods
Several substrates were evaluated (glucose, fructose, sucrose, xylose, starch, cellobiose, cellulose and lactose), and its optimal concentration was evaluated by Experimental Design method, besides the application of the isolated strain in citrus peel waste (CPW).
Results
A facultative anaerobic strain, similar (99%) to Enterococcus casseliflavus, was isolated from in natura citrus pulp and bagasse. Xylose was the monomer from which there was greater H2 production (10.3 mmol L−1). For 0.5 to 6.5 gxylose L−1, 3.0 to 12.9 mmol H2 L−1 was obtained, respectively. Generation time (Tg) of 0.35 h and specific growth (µ) of 1.98 h−1 for pH 7.0, 37 °C and 2 g glucose L−1 was obtained for E. casseliflavus. In bioaugmentation assays (CPW + E. casseliflavus), highest maximum H2 production potential (P = 13.9 mmol L−1), maximum H2 production rate (Rm = 1.09 mmol h−1) and time to start the H2 production (λ = 2.12 h−1) was observed when compared to glucose (P = 9.1 mmol L−1; Rm = 1.99 mmol h−1; λ = 4.08 h−1).
Conclusion
From glucose, there was prevalence of butyric acid pathway (759 mg L−1) in relation to acetic acid (303 mg L−1). From CPW, there was higher production of acetic acid (878 mg L−1) in relation to butyric (147 mg L−1). The application of E. casseliflavus by bioaugmentation is an alternative for biodigestion of complex substrates, such as CPW, to obtain products of biotechnological interest.
Graphic Abstract

This is a preview of subscription content, access via your institution.








References
- 1.
Forster-Carneiro, T., Pérez, M., Romero, L.I.: Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour. Technol. 99, 6994–7002 (2008). https://doi.org/10.1016/j.biortech.2008.01.018
- 2.
Leitão, R.C., Costa, A.G., Cassales, A.R., Alexandre, L.C., Pinheiro, F.G.C., Pinheiro, G.C., Viana, A.F., Santaella, S.T., Santos, A.B., de Rosa, M.F.: Biodegradabilidade Anaeróbia dos Resíduos Provenientes das Cadeias Produtivas dos Biocombustíveis: Bagaço de Cana-de-açúcar. Embrapa Agroindústria Trop. 1, 41 (2013)
- 3.
Forgács, G., Pourbafrani, M., Niklasson, C., Taherzadeh, M.J., Hováth, I.S.: Methane production from citrus wastes: process development and cost estimation. J. Chem. Technol. Biotechnol. 87, 250–255 (2012). https://doi.org/10.1002/jctb.2707
- 4.
Calabrò, P.S., Pontoni, L., Porqueddu, I., Greco, R., Pirozzi, F., Malpei, F.: Effect of the concentration of essential oil on orange peel waste biomethanization: preliminary batch results. Waste Manag. 48, 440–447 (2016). https://doi.org/10.1016/j.wasman.2015.10.032
- 5.
Su, H., Tan, F., Xu, Y.: Enhancement of biogas and methanization of citrus waste via biodegradation pretreatment and subsequent optimized fermentation. Fuel 181, 843–851 (2016). https://doi.org/10.1016/j.fuel.2016.05.055
- 6.
Ruiz, B., Flotats, X.: Effect of limonene on batch anaerobic digestion of citrus peel waste. Biochem. Eng. J. 109, 9–18 (2016). https://doi.org/10.1016/j.bej.2015.12.011
- 7.
Ruiz, B., Flotats, X.: Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Manag. 34, 2063–2079 (2014). https://doi.org/10.1016/j.wasman.2014.06.026
- 8.
López, J.Á.S., Li, Q., Thompson, I.P.: Biorefinery of waste orange peel. Crit. Rev. Biotechnol. 30, 63–69 (2010). https://doi.org/10.3109/07388550903425201
- 9.
Li, Q., Siles, J.A., Thompson, I.P.: Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl. Microbiol. Biotechnol. 88, 671–678 (2010). https://doi.org/10.1007/s00253-010-2726-9
- 10.
Maintinguer, S.I., Lazaro, C.Z., Pachiega, R., Varesche, M.B.A., Sequinel, R., de Oliveira, J.E.: Hydrogen bioproduction with Enterobacter sp isolated from brewery wastewater. Int. J. Hydrogen Energy. 42, 152–160 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.104
- 11.
Kumar, G., Bakonyi, P., Kobayashi, T., Xu, K.Q., Sivagurunathan, P., Kim, S.H., Buitrón, G., Nemestóthy, N., Bélafi-Bakó, K.: Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew. Sustain. Energy Rev. 57, 879–891 (2016). https://doi.org/10.1016/j.rser.2015.12.107
- 12.
Ecem Öner, B., Akyol, Ç., Bozan, M., Ince, O., Aydin, S., Ince, B.: Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. Bioresour. Technol. 249, 620–625 (2018). https://doi.org/10.1016/j.biortech.2017.10.040
- 13.
Valdez-vazquez, I., Castillo-rubio, L.G., Pérez-rangel, M., Sepúlveda-gálvez, A., Vargas, A.: Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains. Ind. Crop. Prod. 137, 105–111 (2019). https://doi.org/10.1016/j.indcrop.2019.05.023
- 14.
Lin, C., Lay, C., Sung, I., Sen, B., Chen, C., Al, L.I.N.E.T., Ioeng, J.B.I.B.: Anaerobic hydrogen production from unhydrolyzed mushroom farm waste by indigenous microbiota. J. Biosci. Bioeng. 124, 425–429 (2017). https://doi.org/10.1016/j.jbiosc.2017.05.001
- 15.
Rabelo, C.A.B.S., Soares, L.A., Sakamoto, I.K., Varesche, M.B.A.: Bioconversion of cellulose into hydrogen, biogas and organic acids using microbial consortium from pulp and paper mill wastewater treatment plant. Quim. Nova. 41, 169–175 (2018)
- 16.
Ács, N., Bagi, Z., Rákhely, G., Minárovics, J., Nagy, K., Kovács, K.L.: Bioaugmentation of biogas production by a hydrogen-producing bacterium. Bioresour. Technol. 186, 286–293 (2015). https://doi.org/10.1016/j.biortech.2015.02.098
- 17.
Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I.: Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy. 27, 1339–1347 (2002). https://doi.org/10.1016/S0360-3199(02)00090-3
- 18.
John, U.V., Carvalho, J.: Enterococcus: Review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front. Biol. 6, 357–366 (2011). https://doi.org/10.1007/s11515-011-1167-x
- 19.
Mubarak, Z., Soraya, C.: The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. F1000Research 7, 287 (2018)
- 20.
Huycke, M.M.: Physiology of Enterococci. In: Al, M.S.G., et al. (eds.) The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resist, pp. 133–175. ASM Press, Washington (2002)
- 21.
Cibis, K.G., Gneipel, A., König, H.: Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. J. Biotechnol. 220, 51–63 (2016)
- 22.
Yun, J.S., Wee, Y.J., Ryu, H.W.: Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb. Technol. 33, 416–423 (2003). https://doi.org/10.1016/S0141-0229(03)00139-X
- 23.
Choi, I.S., Lee, Y.G., Khanal, S.K., Park, B.J., Bae, H.J.: A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy. 140, 65–74 (2015). https://doi.org/10.1016/j.apenergy.2014.11.070
- 24.
Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., Kamiński, M.: Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 91, 665–694 (2018). https://doi.org/10.1016/j.rser.2018.04.043
- 25.
Nation, J.L.: A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58, 347–351 (1983)
- 26.
Camargo, F.P., Sakamoto, I.K., Duarte, I.C.S., Varesche, M.B.A.: Influence of alkaline peroxide assisted and hydrothermal pretreatment on biodegradability and bio-hydrogen formation from citrus peel waste. Int. J. Hydrogen Energy. (2019). https://doi.org/10.1016/j.ijhydene.2019.07.011
- 27.
Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., Igarashi, Y.: Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59, 529–534 (2002). https://doi.org/10.1007/s00253-002-1026-4
- 28.
Wang, W., Yan, L., Cui, Z., Gao, Y., Wang, Y., Jing, R.: Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour. Technol. 102, 9321–9324 (2011). https://doi.org/10.1016/j.biortech.2011.07.065
- 29.
Green, M.R., Sambrook, J.: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York (2012)
- 30.
Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991)
- 31.
Rodrigues, M.I., Iemma, A.F.: Planejamento de Experimentos e Otimização de Processos. Casa do Espírito Amigo Fraternidade Fé e Amor, Campinas (2014)
- 32.
APHA, AWWA, WEF: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (2012)
- 33.
Blundi, C., Gardêlha, R.: Método para determinação de matéria orgânica específica em águas residuárias. In: Chernicharo, C.A.L. (ed.) Pós tratamento de efluentes de reatores anaeróbios: aspectos metodológicos, pp. 9–17. Universidade Federal de Minas Gerais, Belo Horizonte (2001)
- 34.
Dubois, M., Gilles, K., Hamilton, J., Rebers, P., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017
- 35.
Buchanan, I.D., Nicell, J.A.: Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol. Bioeng. 54, 251–261 (1997). https://doi.org/10.1002/(SICI)1097-0290(19970505)54:3%3c251:AID-BIT6%3e3.0.CO;2-E
- 36.
Taylor, K.A.C.: A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotechnol. 56, 49–58 (1996). https://doi.org/10.1007/BF02787869
- 37.
Adorno, M.A.T., Hirasawa, J.S., Varesche, M.B.A.: Development and Validation Of Two Methods To Quantify Volatile Acids (C2–C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am. J. Anal. Chem. 05, 406–414 (2014). https://doi.org/10.4236/ajac.2014.57049
- 38.
Zwietering, M.H., De Wit, J.C., Cuppers, H.G.A.M., Van’t-Riet, K.: Modeling of bacterial growth with shifts in temperature. Appl. Environ. Microbiol. 60, 204–213 (1994)
- 39.
Hammer, R., Harper, D., Ryan, P.: Past paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001)
- 40.
De-Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Whitman, R., Schleifer, K.-H., Whitman, W.B. (2009) The firmicutes. In: Whitman, W.B. (ed.) Bergey’s Manual of Systematic Bacteriology, p. 1450. Springer, Athens
- 41.
Li, D., Jiao, C., He, W., Yan, Z., Yuan, Y., Li, Z., Guo, Y., Liu, X.: Comparison of micro-aerobic and anaerobic fermentative hydrogen production from corn straw. Int. J. Hydrogen Energy. 41, 5456–5464 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.141
- 42.
Wang, A., Gao, L., Ren, N., Xu, J., Liu, C.: Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnol. Lett. 31, 1321–1326 (2009). https://doi.org/10.1007/s10529-009-0028-z
- 43.
Herdian, H., Istiqomah, L., Damayanti, E., Suryani, A.E., Anggraeni, A.S., Rosyada, N., Susilowati, A.: Isolation of cellulolytic lactic-acid bacteria from mentok (Anas moschata) gastro-intestinal tract. Trop. Anim. Sci. J. 41, 200–206 (2018). https://doi.org/10.5398/tasj.2018.41.3.200
- 44.
Parente, E., Brienza, C., Ricciardi, A., Addario, G.: Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. J. Ind. Microbiol. Biotechnol. 18, 62–67 (1997)
- 45.
Orandi, S.M., Rasca, M.B., Lfieri, P.A., Odi, R.L., Amburini, A.T.: Original article Influence of pH and temperature on the growth of Enterococcus faecium and Enterococcus faecalis. Le Lait 85, 181–192 (2005). https://doi.org/10.1051/lait
- 46.
Martínez, S., López, M., Bernardo, A.: Thermal inactivation of Enterococcus faecium: effect of growth temperature and physiological state of microbial cells. Lett. Appl. Microbiol. 37, 475–481 (2003). https://doi.org/10.1046/j.1472-765X.2003.01431.x
- 47.
Zheng, Y., Zhao, J., Xu, F., Li, Y.: Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35–53 (2014). https://doi.org/10.1016/j.pecs.2014.01.001
- 48.
Da-Mazareli, R.C.S., Sakamoto, I.K., Silva, E.L., Varesche, M.B.A.: Bacillus sp isolated from banana waste and analysis of metabolic pathways in acidogenic systems in hydrogen production. J. Environ. Manag. 247, 178–186 (2019). https://doi.org/10.1016/j.jenvman.2019.06.040
- 49.
An, D., Li, Q., Wang, X., Yang, H., Guo, L.: Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int. J. Hydrogen Energy. 39, 19928–19936 (2014). https://doi.org/10.1016/j.ijhydene.2014.10.014
- 50.
Choi, I.S., Kim, J.H., Wi, S.G., Kim, K.H., Bae, H.J.: Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl. Energy 102, 204–210 (2013). https://doi.org/10.1016/j.apenergy.2012.03.066
- 51.
Wilkins, M.R., Widmer, W.W., Grohmann, K., Cameron, R.G.: Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour. Technol. 98, 1596–1601 (2007). https://doi.org/10.1016/j.biortech.2006.06.022
- 52.
Mäkinen, A.E., Nissilä, M.E., Puhakka, J.A.: Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int. J. Hydrogen Energy 37, 12234–12240 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.158
- 53.
Yin, Y., Wang, J.: Characterization and hydrogen production performance of a novel strain Enterococcus faecium INET2 isolated from gamma irradiated sludge. Int. J. Hydrogen Energy 41, 22793–22801 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.059
- 54.
Tapia-Venegas, E., Ramirez, J.E., Donoso-Bravo, A., Jorquera, L., Steyer, J.P., Ruiz-Filippi, G.: Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor. Int. J. Hydrogen Energy 38, 2185–2190 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.077
- 55.
Palomo-Briones, R., Celis, L.B., Méndez-Acosta, H.O., Bernet, N., Trably, E., Razo-Flores, E.: Enhancement of mass transfer conditions to increase the productivity and efficiency of dark fermentation in continuous reactors. Fuel 254, 115648 (2019). https://doi.org/10.1016/j.fuel.2019.115648
- 56.
Bakonyi, P., Buitrón, G., Valdez-Vazquez, I., Nemestóthy, N., Bélafi- Bakó, K.: A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation. Appl. Energy 190, 813–823 (2017). https://doi.org/10.1016/j.apenergy.2016.12.151
- 57.
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015). https://doi.org/10.1016/j.apenergy.2015.01.045
- 58.
Li, C., Fang, H.H.P.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39 (2007). https://doi.org/10.1080/10643380600729071
- 59.
Sinha, P., Pandey, A.: Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int. J. Hydrogen Energy 39, 7518–7525 (2014). https://doi.org/10.1016/j.ijhydene.2013.08.134
- 60.
Infantes, D., del Campo, A.G., Villaseñor, J., Fernández, F.J.: Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int. J. Hydrogen Energy 6, 15595–15601 (2011). https://doi.org/10.1016/j.ijhydene.2011.09.061
- 61.
Ahmad, F., Silva, E.L., Varesche, M.B.A.: Hydrothermal processing of biomass for anaerobic digestion—a review. Renew. Sustain. Energy Rev. 98, 108–124 (2018). https://doi.org/10.1016/j.rser.2018.09.008
- 62.
Rosa, P.R.F., Silva, E.L.: Review of Continuous Fermentative Hydrogen- Producing Bioreactors from Complex Wastewater. Front. Bioenergy Biofuels Hydrog. (2017). https://doi.org/10.5772/65548
- 63.
Fonseca, B.C., Schmidell, W., Reginatto, V.: Impact of glucose concentration on productivity and yield of hydrogen production by the new isolate Clostridium beijerinckii Br 21. Can. J. Chem. Eng. 9999, 1–8 (2018). https://doi.org/10.1002/cjce.23327
- 64.
Valdez-Vazquez, I., Pérez-Rangel, M., Tapia, A., Buitrón, G., Molina, C., Hernández, G., Amaya-Delgado, L.: Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel 159, 214–222 (2015). https://doi.org/10.1016/j.fuel.2015.06.052
- 65.
Braga, J.K., Abreu, A.A., Motteran, F., Pereira, M.A., Alves, M.M., Varesche, M.B.A.: Hydrogen production by clostridium cellulolyticum a cellulolytic and hydrogen-producing bacteria using sugarcane bagasse. Waste Biomass Valoriz. 1–11 (2017). https://doi.org/10.1007/s12649-017-0105-9
Acknowledgements
The authors would like to thank the technical support of Dr. Maria Angela Adorno and Dr. Carolina Sabatini. This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (processes 2017/01722-0 and 2015/06246-7) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Camargo, F.P., Sakamoto, I.K., Silva, E.L. et al. Bioaugmentation with Enterococcus casseliflavus: A Hydrogen-Producing Strain Isolated from Citrus Peel Waste. Waste Biomass Valor 12, 895–911 (2021). https://doi.org/10.1007/s12649-020-01049-7
Received:
Accepted:
Published:
Issue Date:
Keywords
- Lignocellulosic biomass
- Autochthonous consortia
- Agro-industrial waste
- Nutritional evaluation