Catalytic Effect of Activated Carbon in Determining Resorcinol in Water and Hair Color at Graphite Electrode

Abstract

An activated carbon modified carbon paste electrode (AC/CPE) was fabricated, and the electrochemical oxidation of resorcinol (RS) was studied in phosphate buffer solution. The results revealed that the activated carbon has a catalytic effect on the oxidation current of RS in buffered solution relative to an unmodified carbon paste electrode. The oxidation mechanism was studied using cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The results demonstrated that the oxidation of RS at this AC/CPE electrode was irreversible and co-contribution of adsorption and diffusion. Under the optimal chemical and DPV parameters, the anodic peak current showed a linear relation versus RS concentration in the range from 1.0 × 10–7 to 1.0 × 10–4 mol L−1 with detection limit of 3.5 × 10–8 mol L−1 (3Sb/m). Moreover, the modified electrode demonstrated good repeatability (RSD = 3.12%, n = 8), long-term stability and excellent anti-interference property by peaks separation. This method has been applied to the determination of RS in tap water and commercial hair color samples. The obtained results are similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level).

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Mazloum-Ardakani, M., Sheikh-Mohseni, M.A., Mirjalili, B.B.F., Zamani, L.: Simultaneous determination of captopril, acetaminophen and tryptophan at a modified electrode based on carbon nanotubes. J. Electroanal. Chem. 686, 12–18 (2012)

    Google Scholar 

  2. 2.

    Mazloum-Ardakani, M., Sheikh-Mohseni, M.A., Benvidi, A.: Determination of salicylate by selective and sensitive polymer membrane electrode: with internal solution and solid contact. Anal. Bioanal. Electrochem. 2, 155–164 (2010)

    Google Scholar 

  3. 3.

    Gholamian, F., Sheikh-Mohseni, M.A., Naeimi, H.: Simultaneous determination of phenylhydrazine and hydrazine by a nanostructured electrochemical sensor. Mater. Sci. Eng. C 32, 2344–2348 (2012)

    Google Scholar 

  4. 4.

    Maashhadizadeh, M.H., Refahati, R., Amereh, E.: Ag/TiO2 nanocomposite modified carbon paste electrode used to differential pulse voltammetric determination of carbamazepine. Anal. Bioanal. Electrochem. 5, 270–282 (2013)

    Google Scholar 

  5. 5.

    Mazloum-Ardakani, M., Sheikh-Mohseni, M.A., Abdollahi-Alibeik, M., Benvidi, A.: Application of nanosized MCM-41 to fabrication of a nanostructured electrochemical sensor for the simultaneous determination of levodopa and carbidopa. Analyst 137, 1950–1955 (2012)

    Google Scholar 

  6. 6.

    Chu, H.W., Thangamuthu, R., Chen, S.M.: Zinc Oxide/Zinc hexacyanoferrate hybrid film-modified electrodes for guanine detection. Electroanalysis 19, 1944–1951 (2007)

    Google Scholar 

  7. 7.

    Svítková, J., Ignat, T., Švorc, Ľ., Labuda, J., Barek, J.: Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 46(3), 248–256 (2016)

    Google Scholar 

  8. 8.

    Švorc, Ľ., Jambrec, D., Vojs, M., Barwe, S., Clausmeyer, J., Michniak, P., Marton, M., Schuhmann, W.: Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays. ACS Appl. Mater. Interfaces 7, 18949–18956 (2015)

    Google Scholar 

  9. 9.

    Veseli, A., Vasjari, M., Arbneshi, T., Hajrizi, A., Švorc, Ľ., Samphao, A., Kalcher, K.: Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide. Sens. Actuators B 228, 774–781 (2016)

    Google Scholar 

  10. 10.

    Treviño-Cordero, H., Juárez-Aguilar, L.G., Mendoza-Castillo, D.I., Hernández Montoya, V., Bonilla-Petriciolet, A., Montes-Morán, M.A.: Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind. Crops Prod. 42, 315–323 (2013)

    Google Scholar 

  11. 11.

    Yang, J., Qui, K.: Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem. Eng. J. 165, 209–217 (2010)

    Google Scholar 

  12. 12.

    Marin, M.O., Gonzalez, C.F., Garcia, A.M., Serrano, V.G.: Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Appl. Surf. Sci. 259, 5967–5971 (2006)

    Google Scholar 

  13. 13.

    Zhu, Z., Li, A., Xia, M., Wan, J., Zhang, Q.: Preparation and characterization of polymer based spherical activated carbons. Chin. J. Polym. Sci. 26, 645–651 (2008)

    Google Scholar 

  14. 14.

    Jain, A., Xu, C., Jayaraman, S., Balasubramanian, R., Lee, J.Y., Srinivasan, M.P.: Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pretreatment of biomass for supercapacitor applications. Microporous Mesoporous Mater. 218, 55–61 (2015)

    Google Scholar 

  15. 15.

    Ghasemi, M., Mashhadi, S., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K.: Microwave- assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye. J. Mol. Liq. 213, 317–325 (2016)

    Google Scholar 

  16. 16.

    Saeidi, N., Parvini, M., Niavarani, Z.: High surface area and mesoporous graphene/activated carbon 2 composite for adsorption of Pb(II) from wastewater. J. Environ. Chem. Eng. 3(4), 2697–2706 (2015)

    Google Scholar 

  17. 17.

    Karagozoglu, B., Tasdemir, M., Demirbas, E., Kobya, M.: The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. J. Hazard. Mater. 147, 297–306 (2007)

    Google Scholar 

  18. 18.

    Ahmed, M.J., Theydan, S.K.: Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to absorb organics. Powder Technol. 229, 237–245 (2012)

    Google Scholar 

  19. 19.

    Haimour, N.M., Emeish, S.: Utilization of date stones for production of activated carbon using phosphoric acid. Waste Manage. 26, 651–660 (2006)

    Google Scholar 

  20. 20.

    Girgis, B.S., El-Hendawy, A.N.A.: Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater. 52, 105–117 (2002)

    Google Scholar 

  21. 21.

    Bouchelta, C., Medjram, M.S., Bertrand, O., Bellat, J.P.: Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 82, 70–77 (2008)

    Google Scholar 

  22. 22.

    Singh, K.P., Malik, A., Sinha, S., Ojha, P.: Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J. Hazard. Mater. 150, 626–641 (2008)

    Google Scholar 

  23. 23.

    Din, A.T.M., Hameed, B.H., Ahmad, A.L.: Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 161, 1522–1529 (2009)

    Google Scholar 

  24. 24.

    Aghav, R.M., Kumar, S., Mukherjee, S.N.: Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents. J. Hazard. Mater. 188, 67–77 (2011)

    Google Scholar 

  25. 25.

    Wang, Z., Li, S., Lv, Q.: Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode. Sens. Actuators B 127, 420–425 (2007)

    Google Scholar 

  26. 26.

    Guardia, M., Khalaf, K.D., Hasan, B.A., Morales, R.A., Carbonell, V.: In-line, titanium dioxide-catalysed, ultraviolet mineralization of toxic aromatic compounds in the waste stream from a flow injection-based RS analyser. Analyst 2, 231–235 (1995)

    Google Scholar 

  27. 27.

    Kang, C., Wang, Y., Li, R., Du, Y., Li, J., Zhang, B., Zhou, L., Du, Y.: A modified spectrophotometric method for the determination of trace amounts of phenol in water. Microchem. J. 64, 161–165 (2000)

    Google Scholar 

  28. 28.

    Yang, L., Wang, Z., Xu, L.: Simultaneous determination of phenols (bibenzyl, phenanthrene, and fluorenone) in Dendrobium species by high-performance liquid chromatography with diode array detection. J. Chromatogr. A 1104, 230–237 (2006)

    Google Scholar 

  29. 29.

    Wu, Y., Lin, J.M.: Determination of phenol in landfill leachate by using microchip capillary electrophoresis with end-channel amperometric detection. J. Sep. Sci. 29, 137–143 (2006)

    Google Scholar 

  30. 30.

    Mirmohseni, A., Oladegaragoze, A.: Application of the quartz crystal microbalance for determination of phenol in solution. Sens. Actuators B 98, 28–36 (2004)

    Google Scholar 

  31. 31.

    Du, J., Li, Y., Lu, J.: Flow injection chemiluminescence determination of polyhydroxy phenols using luminol–ferricyanide/ferrocyanide system. Talanta 55, 1055–1058 (2001)

    Google Scholar 

  32. 32.

    Wright, J.D., Oliver, J.V., Nolte, R.J.M., Holder, S.J., Sommerdijk, N.A.J.M., Nikitin, P.I.: The detection of phenols in water using a surface plasmon resonance system with specific receptors. Sens. Actuators B 51, 305–310 (1998)

    Google Scholar 

  33. 33.

    Del Olmo, M., Zafra, A., Jurado, A.B., Vilchez, J.L.: Determination of bisphenol A (BPA) in the presence of phenol by firstderivative fluorescence following micro liquid–liquid extraction (MLLE). Talanta 50, 1141–1148 (2000)

    Google Scholar 

  34. 34.

    Pistonesi, M.F., Di Nezio, M.S., Centurion, M.E., Palomeque, M.E., Lista, A.G., Fernandez Band, B.S.: Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69, 1265–1268 (2006)

    Google Scholar 

  35. 35.

    Fan, J., Zhang, T., Sun, J., Fan, M.: Kinetic fluorimetric measurement of trace RS1 in phenol mixtures. J. Fluoresc. 17, 113–118 (2007)

    Google Scholar 

  36. 36.

    Wenxiang, X., Dan, X.: Aminopyrene functionalized mesoporous silica for the selective determination of RS. Talanta 72, 1288–1292 (2007)

    Google Scholar 

  37. 37.

    Chandra, S., Lang, H., Bahadur, D.: Polyaniline-iron oxide nanohybrid film as multi-functional label-free electrochemical and biomagnetic sensor for catechol. Anal. Chim. Acta 795, 8–14 (2013)

    Google Scholar 

  38. 38.

    Qi, H.L., Zhang, C.X.: Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17, 832–838 (2005)

    Google Scholar 

  39. 39.

    Yang, P., Zhu, Q.Y., Chen, Y.H., Wang, F.W.: Simultaneous determination of hydroquinone and catechol using poly (p-aminobenzoic acid) modified glassy carbon electrode. J. Appl. Polym. Sci. 113, 2881–2886 (2009)

    Google Scholar 

  40. 40.

    Ahammad, A.J.S., Sarker, S., Rahman, M.A., Lee, J.J.: Simultaneous determination of hydroquinone and catechol at an activated glassy carbon electrode. Electroanalysis 22, 694–700 (2010)

    Google Scholar 

  41. 41.

    Wang, C., Yuan, R., Chai, Y.Q., Hu, F.X.: Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode. Anal. Methods 4, 1626–1628 (2012)

    Google Scholar 

  42. 42.

    Hammani, H., Boumya, W., Laghrib, F., Farahi, A., Lahrich, S., Aboulkas, A., El Mhammedi, M.A.: Electro-catalytic effect of Al2O3 supported onto activated carbon in oxidizing phenol at graphite electrode. Mater. Today chem. 3, 27–36 (2017)

    Google Scholar 

  43. 43.

    Skoog, D.A., Holler, F.J., Nieman, T.A.: Principles of Instrumental Analysis, fiveth edn. Harcourt Brace, Philadelphia (1998)

    Google Scholar 

  44. 44.

    Brett, C.M.A., Brett, A.M.O.: Electrochemistry, Principles, Methods and Applications, 1st edn. Oxford University Press, New York (1993)

    Google Scholar 

  45. 45.

    El-Wekil, M.M., Mahmoud, A.M., Alkahtani, S.A., Marzouk, A.A., Ali, R.: A facile synthesis of 3D NiFe2O4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: Application to human pharmacokinetic study. Biosens. Bioelectron. 109, 164–170 (2018)

    Google Scholar 

  46. 46.

    Alkahtani, S.A., Mahmoud, A.M., Mahnashi, M.H., Ali, R., El-Wekil, M.M.: Facile fabrication of a novel 3D rose like lanthanum doped zirconia decorated reduced graphene oxide nanosheets: An efficient electro-catalyst for electrochemical reduction of futuristic anti-cancer drug salinomycin during pharmacokinetic study. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.111849

    Article  Google Scholar 

  47. 47.

    Taşdemir, I.H., Akay, M.A., Erk, N., Kiliç, E.: Voltammetric behavior of telmisartan and cathodic adsorptive stripping voltammetric method for its assay in pharmaceutical dosage forms and biological fluids. Electroanalysis 22(17–18), 2101–2109 (2010)

    Google Scholar 

  48. 48.

    Öztürk, F., Taşdemir, I.H., Durmuş, Z., Kiliç, E.: Electrochemical behavior of disopyramide and its adsorptive stripping determination in pharmaceutical dosage forms and biological fluids. Collect. Czech. Chem. Commun. 75, 685–702 (2010)

    Google Scholar 

  49. 49.

    Bard, A.J., Faulkner, L.R.: Electrochemical methods: Fundamentals and applications, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  50. 50.

    Galus, Z.: Fundamentals of electrochemical analysis. Ellis Horwood, New York (1976)

    Google Scholar 

  51. 51.

    Yin, H., Zhang, Q., Zhou, Y., Ma, Q., T. liu, L. Zhu, S, : Ai, Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim. Acta 56, 2748–2753 (2011)

    Google Scholar 

  52. 52.

    Zhang, D., Peng, Y., Qi, H., Gao, Q., Zhang, C.: Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sens. Actuators B 136, 113–121 (2009)

    Google Scholar 

  53. 53.

    Ghoreishi, S.M., Behpour, M., Hajisadeghian, E., Golestaneh, M.: Voltammetric determination of resorcinol on the surface of a glassy carbon electrode modified with multi-walled carbon nanotube. Arab. J. Chem. 9, 1563–1568 (2016)

    Google Scholar 

  54. 54.

    Wang, L., Huang, P.F., Bai, J.Y., Wang, H.J., Zhang, L.Y., Zhao, Y.Q.: Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol. Microchim. Acta 158, 151–157 (2007)

    Google Scholar 

  55. 55.

    Ding, Y.P., Lin, W.L., Wu, Q., Wang, X.: Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J. Electroanal. Chem. 575, 275–280 (2005)

    Google Scholar 

  56. 56.

    Chen, Y., Liu, X., Zhang, S., Yang, L., Liu, M., Zhang, Y., Yao, S.: Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim. Acta 17, 30324–30329 (2017)

    Google Scholar 

Download references

Funding

This study was funded by university Sultan Moulay Slimane, Morocco.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. El Mhammedi.

Ethics declarations

Conflict of interest

H. Hammani, F. Laghrib, A. Farahi, S. Lahrich, M.A. El Mhammedi, declares that he had no conflict of interest.

Ethical Approval

H. Hammani, F. Laghrib, A. Farahi, S. Lahrich, M.A. El Mhammedi, declares that this study is ethically approved.

Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammani, H., Laghrib, F., Farahi, A. et al. Catalytic Effect of Activated Carbon in Determining Resorcinol in Water and Hair Color at Graphite Electrode. Waste Biomass Valor 12, 1107–1118 (2021). https://doi.org/10.1007/s12649-020-01047-9

Download citation

Keywords

  • Activated carbon
  • Electrocatalytic oxidation
  • Resorcinol
  • Tap water
  • Hair color