Abstract
Due to the growing number of biomass boiler plants there are rapid growth of biomass combustion by-products. The key point of this investigation is to utilize biomass bottom ash (BBA) and silicagel by-product (SB) in the matrices of alkali activated binders. BBA and SB are the main ingredients of aluminumsilicate precursor. This aluminosilicate precursor is a potential initial material for the preparation of alkali activated materials (AAMs). Currently, in Lithuania there are more than 160 biomass boiler plants and few more are under construction. These types of plants generate more then 25–30 thousand tons of BBA. In this paper, the compressive strength of alkali activated binders specimens was dependent on the amounts of SB and alkali activator. The hydration products of AAMs were analyzed by XRD, SEM and FT-IR. The highest compressive strength (21.6 MPa) was observed in specimens based on biomass bottom ash and 35% of SB. This blended mixture of the locally available by-product (BBA and SB) have potential to produce eco-friendly AAMs binder.
Graphic Abstract

This is a preview of subscription content, access via your institution.






References
- 1.
Rivera, J.F., De Gutierrez, R.M., Mejia, J.M., Gordillo, M.: Hybrid cement based on the alkali activation of by-products of coal. Rev. Constr. 13, 31–39 (2014)
- 2.
Karozou, A., Konopisi, S., Paulidou, E., Stefanidou, M.: Alkali activated clay mortars with different activators. Constr. Build. Mater. (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.244
- 3.
Criado, M., Walkley, B., Ke, X., Provis, J., Bernal, S.: Slag and activator chemistry control the reaction kinetics of sodium metasilicate-activated slag cements. Sustainability (2018). https://doi.org/10.3390/su10124709
- 4.
Ding, Y., Dai, J.G., Shi, C.J.: Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.121
- 5.
Xie, T., Ozbakkaloglu, T.: Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.01.031
- 6.
Nath, P., Sarker, P.K.: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.034
- 7.
Fan, F., Liu, Z., Xu, G., Peng, H., Cai, C.S.: Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.023
- 8.
Zhang, S., Keulen, A., Arbi, K., Ye, G.: Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem. Concr. Res. (2017). https://doi.org/10.1016/j.cemconres.2017.08.012
- 9.
Simanjuntak, W., Sembiring, S., Manurung, P., Situmeang, R., Low, I.M.: Characteristics of aluminosilicates prepared from rice husk silica and aluminum metal. Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2013.04.112
- 10.
Torres-Carrasco, M., Puertas, F.: Waste glass as a precursor in alkaline activation: chemical process and hydration products. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.071
- 11.
Abdollahnejad, Z., Dalvand, A., Mastali, M., Luukkonen, T., Illikainen, M.: Effects of waste ground glass and lime on the crystallinity and strength of geopolymers. Mag. Concr. Res. (2018). https://doi.org/10.1680/jmacr.18.00300
- 12.
Zhuang, H.J., Zhang, H.Y., Xu, H.: Resistance of geopolymer mortar to acid and chloride attacks. Proc. Eng. (2017). https://doi.org/10.1016/j.proeng.2017.11.057
- 13.
Zhu, W., Chen, X., Zhao, A., Struble, L.J., Yang, E.H.: Synthesis of high strength binders from alkali activation of glass materials from municipal solid waste incineration bottom ash. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2018.11.295
- 14.
Kong, D.L., Sanjayan, J.G., Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. (2007). https://doi.org/10.1016/j.cemconres.2007.08.021
- 15.
Liu, M.Y.J., Alengaram, U.J., Santhanam, M., Jumaat, M.Z., Mo, K.H.: Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.076
- 16.
Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Alkali-activated binders: a review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. (2008). https://doi.org/10.1016/j.conbuildmat.2007.10.015
- 17.
https://www.e-tar.lt/portal/lt/legalAct/TAR.9945210D6571/sqVkrinmwe
- 18.
da Costa, T. P., Quinteiro, P., Tarelho, L. A., Arroja, L., & Dias, A. C.: Environmental assessment of valorisation alternatives for woody biomass ash in construction materials. Resources, Conservation and Recycling, (2019). https://doi.org/10.1016/j.resconrec.2019.04.022
- 19.
Perez-Villarejo, L., Bonet-Martinez, E., Eliche-Quesada, D., Sánchez-Soto, P.J., Rincón-López, J.M., Castro-Galiano, E.: Biomass fly ash and aluminium industry slags-based geopolymers. Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.06.100
- 20.
Rajamma, R., Labrincha, J.A., Ferreira, V.M.: Alkali activation of biomass fly ash–metakaolin blends. Fuel (2012). https://doi.org/10.1016/j.fuel.2012.04.006
- 21.
Hu, H., Li, Q., Shen, L., Wang, W., Zhai, J.: Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. J. Hazard Mater. (2010). https://doi.org/10.1016/j.jhazmat.2009.09.149
- 22.
Krysztafkiewicz, A., Rager, B., Maik, M.: Silica recovery from waste obtained in hydrofluoric acid and aluminum fluoride production from fluosilicic acid. J. Hazard. Mater. (1996). https://doi.org/10.1016/0304-3894(95)00126-3
- 23.
Vaičiukyniene, D., Vaitkevičius, V., Kantautas, A., Sasnauskas, V.: Utilization of by-product waste silica in concrete-based materials. Mater. Res. (2012). https://doi.org/10.1590/S1516-14392012005000082
- 24.
Vaičiukynienė, D., Vaitkevičius, V., Kantautas, A., Sasnauskas, V.: Effect of AlF3 production waste on the properties of hardened cement paste. Mater. Sci. (2012). https://doi.org/10.5755/j01.ms.18.2.1925.22
- 25.
Cabrera, M., Galvin, A.P., Agrela, F., Carvajal, M.D., Ayuso, J.: Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Constr. Build. Mater. (2014). https://doi.org/10.1016/j.conbuildmat.2014.01.087
- 26.
Chen, Z., Liu, Y., Zhu, W., Yang, E.H.: Incinerator bottom ash (IBA) aerated geopolymer. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.164
- 27.
Kubiliūtė, R., Kaminskas, R.: The pozzolanic activity of calcined clay-silica gel composites. Mater. Sci. (2013). https://doi.org/10.5755/j01.ms.19.4.2300
- 28.
Bernal, S.A.: Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr. Build. Mater. (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.013
- 29.
Pacheco-Torgal, F., Labrincha, J.A., Leonelli, C., Palomo, A., Chindaprasit, P.: Handbook of Alkali-Activated Cements, Mortars and Concretes. Cambridge University Press, Cambridge, Cambridge (2015)
- 30.
Chi, M., Liu, Y., Huang, R.: Mechanical and microstructural characterization of alkali-activated materials based on fly ash and slag. IACSIT Int. J. Eng. Technol. (2015). https://doi.org/10.7763/IJET.2015.V7.767
- 31.
Pangdaeng, S., Phoo-ngernkham, T., Sata, V., Chindaprasirt, P.: Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.07.018
- 32.
Huseien, G.F., Ismail, M., Khalid, N.H.A., Hussin, M.W., Mirza, J.: Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: effect of solution molarity. Alexandria Eng. J. (2018). https://doi.org/10.1016/j.aej.2018.07.011
- 33.
Ma, Y., Ye, G., Hu, J.: Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.176
- 34.
Mathivet, V., Jouin, J., Gharzouni, A., Sobrados, I., Celerier, H., Rossignol, S., Parlier, M.: Acid-based geopolymers: understanding of the structural evolutions during consolidation and after thermal treatments. Non Cryst. Solids. (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.025
- 35.
Abdel-Gawwad, H.A., Abo-El-Enein, S.A.: A novel method to produce dry geopolymer cement powder. HBRC J. (2016). https://doi.org/10.1016/j.hbrcj.2014.06.008
- 36.
Topçu, İ.B., Toprak, M.U., Uygunoğlu, T.: Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. J. Clean. Prod. (2014). https://doi.org/10.1016/j.jclepro.2014.06.037
- 37.
Lancellotti, I., Cannio, M., Bollino, F., Catauro, M., Barbieri, L., Leonelli, C.: Geopolymers: an option for the valorization of incinerator bottom ash derived “end of waste”. Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2014.10.008
- 38.
Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E., Singh, P.: Review of fluoride removal from drinking water. J. Environ. Manag. (2009). https://doi.org/10.1016/j.jenvman.2009.08.015
Acknowledgements
This research work was supported by the Lithuanian Science Council project “The utilization of industrial waste in alkali-activated concrete”, project code S-MIP-17-363.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Vaičiukynienė, D., Nizevičienė, D., Kantautas, A. et al. Alkali Activated Binders Based on Biomass Bottom Ash and Silica By-Product Blends. Waste Biomass Valor 12, 1095–1105 (2021). https://doi.org/10.1007/s12649-020-01042-0
Received:
Accepted:
Published:
Issue Date:
Keywords
- Biomass bottom ash
- Alkali activated binders
- Bio-composite
- Silica by-product