Alkali Activated Binders Based on Biomass Bottom Ash and Silica By-Product Blends

Abstract

Due to the growing number of biomass boiler plants there are rapid growth of biomass combustion by-products. The key point of this investigation is to utilize biomass bottom ash (BBA) and silicagel by-product (SB) in the matrices of alkali activated binders. BBA and SB are the main ingredients of aluminumsilicate precursor. This aluminosilicate precursor is a potential initial material for the preparation of alkali activated materials (AAMs). Currently, in Lithuania there are more than 160 biomass boiler plants and few more are under construction. These types of plants generate more then 25–30 thousand tons of BBA. In this paper, the compressive strength of alkali activated binders specimens was dependent on the amounts of SB and alkali activator. The hydration products of AAMs were analyzed by XRD, SEM and FT-IR. The highest compressive strength (21.6 MPa) was observed in specimens based on biomass bottom ash and 35% of SB. This blended mixture of the locally available by-product (BBA and SB) have potential to produce eco-friendly AAMs binder.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Rivera, J.F., De Gutierrez, R.M., Mejia, J.M., Gordillo, M.: Hybrid cement based on the alkali activation of by-products of coal. Rev. Constr. 13, 31–39 (2014)

    Google Scholar 

  2. 2.

    Karozou, A., Konopisi, S., Paulidou, E., Stefanidou, M.: Alkali activated clay mortars with different activators. Constr. Build. Mater. (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.244

    Article  Google Scholar 

  3. 3.

    Criado, M., Walkley, B., Ke, X., Provis, J., Bernal, S.: Slag and activator chemistry control the reaction kinetics of sodium metasilicate-activated slag cements. Sustainability (2018). https://doi.org/10.3390/su10124709

    Article  Google Scholar 

  4. 4.

    Ding, Y., Dai, J.G., Shi, C.J.: Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.121

    Article  Google Scholar 

  5. 5.

    Xie, T., Ozbakkaloglu, T.: Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.01.031

    Article  Google Scholar 

  6. 6.

    Nath, P., Sarker, P.K.: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.034

    Article  Google Scholar 

  7. 7.

    Fan, F., Liu, Z., Xu, G., Peng, H., Cai, C.S.: Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.023

    Article  Google Scholar 

  8. 8.

    Zhang, S., Keulen, A., Arbi, K., Ye, G.: Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem. Concr. Res. (2017). https://doi.org/10.1016/j.cemconres.2017.08.012

    Article  Google Scholar 

  9. 9.

    Simanjuntak, W., Sembiring, S., Manurung, P., Situmeang, R., Low, I.M.: Characteristics of aluminosilicates prepared from rice husk silica and aluminum metal. Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2013.04.112

    Article  Google Scholar 

  10. 10.

    Torres-Carrasco, M., Puertas, F.: Waste glass as a precursor in alkaline activation: chemical process and hydration products. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.071

    Article  Google Scholar 

  11. 11.

    Abdollahnejad, Z., Dalvand, A., Mastali, M., Luukkonen, T., Illikainen, M.: Effects of waste ground glass and lime on the crystallinity and strength of geopolymers. Mag. Concr. Res. (2018). https://doi.org/10.1680/jmacr.18.00300

    Article  Google Scholar 

  12. 12.

    Zhuang, H.J., Zhang, H.Y., Xu, H.: Resistance of geopolymer mortar to acid and chloride attacks. Proc. Eng. (2017). https://doi.org/10.1016/j.proeng.2017.11.057

    Article  Google Scholar 

  13. 13.

    Zhu, W., Chen, X., Zhao, A., Struble, L.J., Yang, E.H.: Synthesis of high strength binders from alkali activation of glass materials from municipal solid waste incineration bottom ash. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2018.11.295

    Article  Google Scholar 

  14. 14.

    Kong, D.L., Sanjayan, J.G., Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. (2007). https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  Google Scholar 

  15. 15.

    Liu, M.Y.J., Alengaram, U.J., Santhanam, M., Jumaat, M.Z., Mo, K.H.: Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.076

    Article  Google Scholar 

  16. 16.

    Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Alkali-activated binders: a review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. (2008). https://doi.org/10.1016/j.conbuildmat.2007.10.015

    Article  Google Scholar 

  17. 17.

    https://www.e-tar.lt/portal/lt/legalAct/TAR.9945210D6571/sqVkrinmwe

  18. 18.

    da Costa, T. P., Quinteiro, P., Tarelho, L. A., Arroja, L., & Dias, A. C.: Environmental assessment of valorisation alternatives for woody biomass ash in construction materials. Resources, Conservation and Recycling, (2019). https://doi.org/10.1016/j.resconrec.2019.04.022

  19. 19.

    Perez-Villarejo, L., Bonet-Martinez, E., Eliche-Quesada, D., Sánchez-Soto, P.J., Rincón-López, J.M., Castro-Galiano, E.: Biomass fly ash and aluminium industry slags-based geopolymers. Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.06.100

    Article  Google Scholar 

  20. 20.

    Rajamma, R., Labrincha, J.A., Ferreira, V.M.: Alkali activation of biomass fly ash–metakaolin blends. Fuel (2012). https://doi.org/10.1016/j.fuel.2012.04.006

    Article  Google Scholar 

  21. 21.

    Hu, H., Li, Q., Shen, L., Wang, W., Zhai, J.: Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. J. Hazard Mater. (2010). https://doi.org/10.1016/j.jhazmat.2009.09.149

    Article  Google Scholar 

  22. 22.

    Krysztafkiewicz, A., Rager, B., Maik, M.: Silica recovery from waste obtained in hydrofluoric acid and aluminum fluoride production from fluosilicic acid. J. Hazard. Mater. (1996). https://doi.org/10.1016/0304-3894(95)00126-3

    Article  Google Scholar 

  23. 23.

    Vaičiukyniene, D., Vaitkevičius, V., Kantautas, A., Sasnauskas, V.: Utilization of by-product waste silica in concrete-based materials. Mater. Res. (2012). https://doi.org/10.1590/S1516-14392012005000082

    Article  Google Scholar 

  24. 24.

    Vaičiukynienė, D., Vaitkevičius, V., Kantautas, A., Sasnauskas, V.: Effect of AlF3 production waste on the properties of hardened cement paste. Mater. Sci. (2012). https://doi.org/10.5755/j01.ms.18.2.1925.22

    Article  Google Scholar 

  25. 25.

    Cabrera, M., Galvin, A.P., Agrela, F., Carvajal, M.D., Ayuso, J.: Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Constr. Build. Mater. (2014). https://doi.org/10.1016/j.conbuildmat.2014.01.087

    Article  Google Scholar 

  26. 26.

    Chen, Z., Liu, Y., Zhu, W., Yang, E.H.: Incinerator bottom ash (IBA) aerated geopolymer. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.164

    Article  Google Scholar 

  27. 27.

    Kubiliūtė, R., Kaminskas, R.: The pozzolanic activity of calcined clay-silica gel composites. Mater. Sci. (2013). https://doi.org/10.5755/j01.ms.19.4.2300

    Article  Google Scholar 

  28. 28.

    Bernal, S.A.: Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr. Build. Mater. (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.013

    Article  Google Scholar 

  29. 29.

    Pacheco-Torgal, F., Labrincha, J.A., Leonelli, C., Palomo, A., Chindaprasit, P.: Handbook of Alkali-Activated Cements, Mortars and Concretes. Cambridge University Press, Cambridge, Cambridge (2015)

    Google Scholar 

  30. 30.

    Chi, M., Liu, Y., Huang, R.: Mechanical and microstructural characterization of alkali-activated materials based on fly ash and slag. IACSIT Int. J. Eng. Technol. (2015). https://doi.org/10.7763/IJET.2015.V7.767

    Article  Google Scholar 

  31. 31.

    Pangdaeng, S., Phoo-ngernkham, T., Sata, V., Chindaprasirt, P.: Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.07.018

    Article  Google Scholar 

  32. 32.

    Huseien, G.F., Ismail, M., Khalid, N.H.A., Hussin, M.W., Mirza, J.: Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: effect of solution molarity. Alexandria Eng. J. (2018). https://doi.org/10.1016/j.aej.2018.07.011

    Article  Google Scholar 

  33. 33.

    Ma, Y., Ye, G., Hu, J.: Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.176

    Article  Google Scholar 

  34. 34.

    Mathivet, V., Jouin, J., Gharzouni, A., Sobrados, I., Celerier, H., Rossignol, S., Parlier, M.: Acid-based geopolymers: understanding of the structural evolutions during consolidation and after thermal treatments. Non Cryst. Solids. (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.025

    Article  Google Scholar 

  35. 35.

    Abdel-Gawwad, H.A., Abo-El-Enein, S.A.: A novel method to produce dry geopolymer cement powder. HBRC J. (2016). https://doi.org/10.1016/j.hbrcj.2014.06.008

    Article  Google Scholar 

  36. 36.

    Topçu, İ.B., Toprak, M.U., Uygunoğlu, T.: Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. J. Clean. Prod. (2014). https://doi.org/10.1016/j.jclepro.2014.06.037

    Article  Google Scholar 

  37. 37.

    Lancellotti, I., Cannio, M., Bollino, F., Catauro, M., Barbieri, L., Leonelli, C.: Geopolymers: an option for the valorization of incinerator bottom ash derived “end of waste”. Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2014.10.008

    Article  Google Scholar 

  38. 38.

    Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E., Singh, P.: Review of fluoride removal from drinking water. J. Environ. Manag. (2009). https://doi.org/10.1016/j.jenvman.2009.08.015

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Lithuanian Science Council project “The utilization of industrial waste in alkali-activated concrete”, project code S-MIP-17-363.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Vaičiukynienė.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaičiukynienė, D., Nizevičienė, D., Kantautas, A. et al. Alkali Activated Binders Based on Biomass Bottom Ash and Silica By-Product Blends. Waste Biomass Valor 12, 1095–1105 (2021). https://doi.org/10.1007/s12649-020-01042-0

Download citation

Keywords

  • Biomass bottom ash
  • Alkali activated binders
  • Bio-composite
  • Silica by-product