Abstract
An experimental evolution system with a wood-rotting microbial consortium (BOS08) has demonstrated the acquisition of a new ability to exploit a previously untapped carbon source, such as the recalcitrant carbamazepine (CBZ). The improved extraction method has provided an accurate CBZ depletion rate from BOS08 of \(2.14 \pm 0.42 \times 10^{-3}\;\text{ h }^{-1}\). The consortium did not use cometabolism to process CBZ and the intermediate metabolite produced 10,11-dihydroxycarbamazepine was not pharmacologically active and toxic. The bacteria identification by massive sequencing (Illumina) confirmed the dominance of Proteobacteria Phylum such as genera Cupriavidus sp., Sphingomonas sp., Delftia sp., Acinetobacter sp. and Methylobacterium sp. coexisting through all biodegradation process. Based on biological principles, we model the consortium-CBZ kinetics with a set of nonlinear ordinary differential equations with logistic growth type terms. The use of experimental data combined with logistic growth models allow us to test new functional features acquired by the consortium.
Graphic Abstract

This is a preview of subscription content, access via your institution.




References
- 1.
Jarvis, A.L., Bernot, M.J., Bernot, R.J.: The effects of the psychiatric drug carbamazepine on freshwater invertebrate communities and ecosystem dynamics. Sci. Total Environ. 496, 461 (2014). https://doi.org/10.1016/j.scitotenv.2014.07.084
- 2.
Quinn, B., Schmidt, W., O’Rourke, K., Hernan, R.: Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere 84(5), 657 (2011). https://doi.org/10.1016/j.chemosphere.2011.03.033
- 3.
Ellis, J.: Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ. Pollut. 144(1), 184 (2006). https://doi.org/10.1016/j.envpol.2005.12.018. Soil and Sediment Remediation (SSR)
- 4.
Bendz, D., Paxéus, N.A., Ginn, T.R., Loge, F.J.: Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 122(3), 195 (2005). https://doi.org/10.1016/j.jhazmat.2005.03.012. Pharmaceuticals in the Environment
- 5.
Grossberger, A., Hadar, Y., Borch, T., Chefetz, B.: Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ. Pollut. 185, 168 (2014). https://doi.org/10.1016/j.envpol.2013.10.038
- 6.
Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady, J.C., Stanford, B.D., Snyder, S.A.: Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 43(3), 597 (2009). https://doi.org/10.1021/es801845a
- 7.
Norvill, Z.N., Shilton, A., Guieysse, B.: Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps. J. Hazard. Mater. 313, 291 (2016)
- 8.
González Alonso, S., Catalá, M., Maroto, R.R., Gil, J.L.R., de Miguel, A.G., Valcárcel, Y.: Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ. Int. 36(2), 195 (2010). https://doi.org/10.1016/j.envint.2009.11.004
- 9.
Lin, B., Lyu, J., jin Lyu, X., Yu, H qing, Hu, Z., Lam, J.C., Lam, P.K.: Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. J. Hazard. Mater. 282, 158 (2015). https://doi.org/10.1016/j.jhazmat.2014.06.080. Advances in Analysis, Treatment Technologies, and Environmental Fate of Emerging Contaminants
- 10.
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C.U., Mohan, D.: Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem. Rev. 119(6), 3510 (2019). https://doi.org/10.1021/acs.chemrev.8b00299
- 11.
Thelusmond, J.R., Strathmann, T.J., Cupples, A.M.: The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Sci. Total Environ. 571, 1241 (2016). https://doi.org/10.1016/j.scitotenv.2016.07.154
- 12.
Zhang, Y., Geißen, S.U., Gal, C.: Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8), 1151 (2008). https://doi.org/10.1016/j.chemosphere.2008.07.086
- 13.
Brozinski, J.M., Lahti, M., Meierjohann, A., Oikari, A., Kronberg, L.: The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ. Sci. Technol. 47(1), 342 (2013). https://doi.org/10.1021/es303013j. PMID: 23186122
- 14.
Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C.: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473–474, 619 (2014). https://doi.org/10.1016/j.scitotenv.2013.12.065
- 15.
Wang, J., Wang, S.: Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J. Environ. Manag. 182, 620 (2016). https://doi.org/10.1016/j.jenvman.2016.07.049
- 16.
García-Espinoza, J.D., Mijaylova-Nacheva, P., Avilés-Flores, M.: Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 192, 142 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.147
- 17.
Rao, Y., Yang, H., Xue, D., Guo, Y., Qi, F., Ma, J.: Sonolytic and sonophotolytic degradation of Carbamazepine: kinetic and mechanisms. Ultrason. Sonochem. 32, 371 (2016). https://doi.org/10.1016/j.ultsonch.2016.04.005
- 18.
Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., Buelna, G.: Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 224, 1 (2017). https://doi.org/10.1016/j.biortech.2016.11.042
- 19.
Chen, X., Vollertsen, J., Nielsen, J.L., Gieraltowska Dall, A., Bester, K.: Degradation of PPCPs in activated sludge from different WWTPs in Denmark. Ecotoxicology 24(10), 2073 (2015). https://doi.org/10.1007/s10646-015-1548-z
- 20.
Deng, Y., Li, B., Yu, K., Zhang, T.: Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects. Sci. Total Environ. 544, 980 (2016). https://doi.org/10.1016/j.scitotenv.2015.12.010
- 21.
de Voogt, P., Janex-Habibi, M.L., Sacher, F., Puijker, L., Mons, M.: Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci. Technol. 59(1), 39 (2009). https://doi.org/10.2166/wst.2009.764
- 22.
Martin Ruel, S., Choubert, J.M., Budzinski, H., Miége, C., Esperanza, M., Coquery, M.: Occurrence and fate of relevant substances in wastewater treatment plants regarding Water Framework Directive and future legislations. Water Sci. Technol. 65(7), 1179 (2012). https://doi.org/10.2166/wst.2012.943
- 23.
Xiong, J.Q., Kurade, M.B., Abou-Shanab, R.A., Ji, M.K., Choi, J., Kim, J.O., Jeon, B.H.: Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 205, 183 (2016). https://doi.org/10.1016/j.biortech.2016.01.038
- 24.
Bessa, V., Moreira, I., Tiritan, M., Castro, P.: Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge. Int. Biodeterior. Biodegrad. 120, 135 (2017). https://doi.org/10.1016/j.ibiod.2017.02.008
- 25.
Hata, T., Shintate, H., Kawai, S., Okamura, H., Nishida, T.: Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole. J. Hazard. Mater. 181(1–3), 1175 (2010)
- 26.
Zhang, Y., Geissen, S.U.: Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour. Technol. 112, 221 (2012). https://doi.org/10.1016/j.biortech.2012.02.073
- 27.
Golan-Rozen, N., Seiwert, B., Riemenschneider, C., Reemtsma, T., Chefetz, B., Hadar, Y.: Transformation pathways of the recalcitrant pharmaceutical compound carbamazepine by the white-rot fungus Pleurotus ostreatus: effects of growth conditions. Environ. Sci. Technol. 49(20), 12351 (2015)
- 28.
Rodarte-Morales, A.I., Feijoo, G., Moreira, M.T., Lema, J.M.: Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J. Microbiol. Biotechnol. 27(8), 1839 (2011). https://doi.org/10.1007/s11274-010-0642-x
- 29.
Rodríguez-Rodríguez, C.E., Marco-Urrea, E., Caminal, G.: Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour. Technol. 101(7), 2259 (2010). https://doi.org/10.1016/j.biortech.2009.11.089
- 30.
Simarro, R., González, N., Bautista, L.F., Molina, M.C.: Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol. Ecol. 83(2), 438 (2013). https://doi.org/10.1111/1574-6941.12006
- 31.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R.: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Nat. Acad. Sci. USA 108(Supplement 1), 4516 (2011). https://doi.org/10.1073/pnas.1000080107
- 32.
Jelic, A., Cruz-Morató, C., Marco-Urrea, E., Sarrà, M., Perez, S., Vicent, T., Petrović, M., Barcelo, D.: Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res. 46(4), 955 (2012). https://doi.org/10.1016/j.watres.2011.11.063
- 33.
Swinnen, I.A.M., Bernaerts, K., Dens, E.J., Geeraerd, A.H., Van Impe, J.F.: Predictive modelling of the microbial lag phase: a review. Int. J. Food Microbiol. 94(2), 137 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
- 34.
Munoz-Lopez, M., Edwards, M., Schumann, Uea: Multiplicative modelling of four-phase microbial growth. Pac. J. Math. Ind. 7(7), 1 (2015). https://doi.org/10.1186/s40736-015-0018-0
- 35.
Li, A., Cai, R., Cui, D., Qiu, T., Pang, C., Yang, J., Ma, F., Ren, N.: Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. J. Environ. Sci. 25(11), 2281 (2013). https://doi.org/10.1016/S1001-0742(12)60293-9
- 36.
Monod, J.: Recherches Sur La Croissance Des Cultures Bacteriennes. Hermann & cie, Paris (1942)
- 37.
Kunze, H., Vrscay, E.: Solving inverse problems for ordinary differential equations using the Picard contraction mapping. Inverse Prob. 15, 745 (1999)
- 38.
Yuan, X., Li, S., Hu, J., Yu, M., Li, Y., Wang, Z.: Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: a case study for the Shahe Stream, South China. Sci. Total Environ. 655, 1125 (2019)
- 39.
Ungureanu, C.P., Favier, L., Bahrim, G., Amrane, A.: Response surface optimization of experimental conditions for carbamazepine biodegradation by Streptomyces MIUG 4.89. New Biotechnol. 32(3), 347 (2015). https://doi.org/10.1016/j.nbt.2014.12.005
- 40.
Zhou, J., Yu, X., Ding, C., Wang, Z., Zhou, Q., Pao, H., Cai, W.: Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. J. Environ. Sci. 23(1), 22 (2011). https://doi.org/10.1016/S1001-0742(10)60369-5
- 41.
Pfeiffer, T., Bonhoeffer, S.: Evolution of cross-feeding in microbial populations. Am. Nat. 163(6), E126 (2004). https://doi.org/10.1086/383593
- 42.
Barrick, J.E., Yu, D.S., Yoon, S.H., Jeong, H., Oh, T.K., Lenski, D.S.R.E., Kim, J.F.: Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243 (2009)
- 43.
de Gonzalo, G., Colpa, D.I., Habib, M.H., Fraaije, M.W.: Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110 (2016). https://doi.org/10.1016/j.jbiotec.2016.08.011
- 44.
Woo, H.L., Hazen, T.C., Simmons, B.A., DeAngelis, K.M.: Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst. Appl. Microbiol. 37(1), 60 (2014). https://doi.org/10.1016/j.syapm.2013.10.001
- 45.
Bugg, T.D., Ahmad, M., Hardiman, E.M., Singh, R.: The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22(3), 394 (2011). https://doi.org/10.1016/j.copbio.2010.10.009. Energy biotechnology - Environmental biotechnology
- 46.
Popa, C., Favier, L., Dinica, R., Semrany, S., Djelal, H., Amrane, A., Bahrim, G.: Potential of newly isolated wild Streptomyces strains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environ. Technol. 35(24), 3082 (2014). https://doi.org/10.1080/09593330.2014.931468. PMID: 25244136
- 47.
Kolter, R., Siegele, D.A., Tormo, A.: The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47(1), 855 (1993)
- 48.
Lazazzera, B.A.: Quorum sensing and starvation: signals for entry into stationary phase. Curr. Opin. Microbiol. 3(2), 177 (2000). https://doi.org/10.1016/S1369-5274(00)00072-2
- 49.
Tormo, A., Navarro Llorens, J.M., Martínez-García, E.: Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev. 34(4), 476 (2010). https://doi.org/10.1111/j.1574-6976.2010.00213.x
- 50.
Goo, E., An, J.H., Kang, Y., Hwang, I.: Control of bacterial metabolism by quorum sensing. Trends Microbiol. 23(9), 567 (2015). https://doi.org/10.1016/j.tim.2015.05.007
- 51.
Suutari, M., Lignell, U., Hyvärinen, A., Nevalainen, A.: Media for cultivation of indoor streptomycetes. J. Microbiol. Methods 51(3), 411 (2002). https://doi.org/10.1016/S0167-7012(02)00100-8
- 52.
Miao, X.S., Yang, J.J., Metcalfe, C.D.: Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ. Sci. Technol. 39(19), 7469 (2005)
- 53.
Klampfl, C.W.: Metabolization of pharmaceuticals by plants after uptake from water and soil: a review. Trends Anal. Chem. 111, 13 (2019). https://doi.org/10.1016/j.trac.2018.11.042
- 54.
Sauvêtre, A., May, R., Harpaintner, R., Poschenrieder, C., Schröder, P.: Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. J. Hazard. Mater. 342, 85 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.006
- 55.
Miao, X.S., Metcalfe, C.D.: Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography electrospray tandem mass spectrometry. Anal. Chem. 75(15), 3731 (2003). https://doi.org/10.1021/ac030082k
- 56.
Aubenneau, M., Tahar, A., Casellas, C., Wisniewski, C.: Membrane bioreactor for pharmaceutically active compounds removal: effects of carbamazepine on mixed microbial communities implied in the treatment. Process Biochem. 45(11), 1826 (2010). https://doi.org/10.1016/j.procbio.2010.04.011. Bioprocess Engineering - SFGP2009
- 57.
Bray, S.R., Kitajima, K., Mack, M.C.: emporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 49, 30 (2012). https://doi.org/10.1016/j.soilbio.2012.02.009
- 58.
Soares, M., Rousk, J.: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 131, 195 (2019). https://doi.org/10.1016/j.soilbio.2019.01.010
- 59.
Thelusmond, J.R., Strathmann, T.J., Cupples, A.M.: Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci. Total Environ. 657, 1138 (2019). https://doi.org/10.1016/j.scitotenv.2018.12.145
- 60.
Kraigher, B., Kosjek, T., Heath, E., Kompare, B., Mandic-Mulec, I.: Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 42(17), 4578 (2008). https://doi.org/10.1016/j.watres.2008.08.006
- 61.
Ramírez-Durán, N., Moreno-Pérez, P.A., Sandoval-Trujillo, A.H.: Ecopharmacovigilance (Springer), chap. Bacterial Treatment of Pharmaceutical Industry Effluents., p. chap. 19 (2017)
- 62.
Chopra, D., Kumar, S.: Advances in animal biotechnology and its applications (Springer, Singapore), chap. Pharmaceuticals and Personal Care Products (PPCPs) as Emerging Environmental Pollutants: Toxicity and Risk Assessment., pp. 337–353 (2018)
- 63.
Camargo-Neves, A.A., Araújo, W.L.: In: Shukla, P. Applied Microbiology and Bioengineering. Academic Press, pp. 87–99. (2019) https://doi.org/10.1016/B978-0-12-815407-6.00006-X
Acknowledgements
M. Arrayás is supported by the research grant from the Spanish Ministry of Economy and Competitiveness ESP2017-86263-C4-3-R.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
González-Benítez, N., Molina, M.C. & Arrayás, M. Empirical Evidence and Mathematical Modelling of Carbamazepine Degradative Kinetics by a Wood-Rotting Microbial Consortium. Waste Biomass Valor 12, 995–1003 (2021). https://doi.org/10.1007/s12649-020-01041-1
Received:
Accepted:
Published:
Issue Date:
Keywords
- Wood-rotting consortium
- Carbamazepine
- Proteobacteria
- Kinetics modelling