Effect of Whey Permeate and Lactobacillus buchneri on Biomass Conservation, Chemical Characteristics and Aerobic Stability of Elephant Grass Silage

Abstract

Purpose

This study was carried out to evaluate the effect of whey permeate, bacterial inoculant and periods of fermentation and aerobic exposure on some characteristics of Pennisetum purpureum silage.

Methods

The experimental design was completely randomized with three factors: whey permeate (0, 25, 50 and 100 g kg−1 of fresh matter—FM), bacterial inoculation with Lactobacillus buchneri (inoculated or non-inoculated), and periods of fermentation (from 1 to 35 days) or aerobic exposure (from 0 to 15 days).

Results

Cumulative losses increased sharply up to 14 days, but relative losses persisted up to 21 days in silage with 100 g kg FM−1 of permeate. The addition of permeate reduced neutral detergent fiber by between 16.2% (non-inoculated) and 17% (inoculated), and increased non-fibrous carbohydrates by between 66% (non-inoculated) and 79.3% (inoculated) during fermentation. Carbohydrate fractions followed opposing trends with air exposure, particularly up to 9 days of aerobiosis. Around 9 days of aerobiosis, the pH had the greatest increase (3.7 to 6.8), with NH3-N increasing after that time. L. buchneri increased aerobic stabilization, but higher levels of permeate increased temperature changes.

Conclusion

Permeate must be used at 25 g kg−1 of fresh matter to increase the energy status of Elephant grass silage while providing substrate for fermentation and reducing fermentative losses. The best performance of this level of permeate should also be associated to L. buchneri for effective preservation of nutrients and to keep the aerobic stability of high-moisture Elephant grass silage, being indicated to improve silage conservation.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ortega, M.H., Nava, D.H., Ortega, A.E., Vera, E.S., Jordán, C.M.A.: Effect of silage from ryegrass intercropped with winter or common vetch for grazing dairy cows in small-scale dairy. Trop. Anim. Health Prod. 43, 947–954 (2011)

    Google Scholar 

  2. 2.

    Mwendia, S.W., Yunusa, I.A.M., Sindel, B.M., Whalley, R.D.B., Kariuki, I.W.: Assessment of Napier grass accessions in lowland and highland tropical environments in east Africa: productivity and forage quality. Expl. Agric. 53, 27–43 (2017)

    Google Scholar 

  3. 3.

    Pereira, A.V., Lédo, F.J.S., Machado, J.C.: BRS Kurumi and BRS Capiaçu: new elephant grass cultvars for grazing and cut-and-carry system. Crop. Breed Appl. Biotechnol. 17, 59–62 (2017)

    Google Scholar 

  4. 4.

    Reyes-Cabrera, J., Erickson, J.E., Leon, R.G., Silveira, M.L., Rowland, D.L., Sollenberger, L.E., Morgan, K.T.: Converting bahiagrass pasture land to elephantgrass bioenergy production enhances biomass yield and water quality. Agric. Ecosyst. Environ. 248, 20–28 (2017)

    Google Scholar 

  5. 5.

    Oliveira, L.B., Pires, A.J.V., Carvalho, G.G.P., Ribeiro, L.S.O., Almeida, V.V., Peixoto, C.A.M.: Losses and nutritional value of corn, Sudan sorghum, forage sorghum and sunflower silages. R. Bras. Zootec. 39, 61–67 (2010)

    Google Scholar 

  6. 6.

    Rodrigues, P.H.M., Lobo, J.R., Silva, E.J.A., Borges, L.F.O., Meyer, P.M., Demarchi, J.J.A.A.: Effect of pelleted citrus pulp inclusion on elephantgrass (Pennisetum purpureum, Schum.) ensiling. R. Bras. Zootec. 36, 1751–1760 (2007)

  7. 7.

    Li, Y., Nishino, N.: Changes in the bacterial community and composition of fermentation products during ensiling of wilted Italian ryegrass and wilted guinea grass silages. Anim. Sci. J. 84, 607–612 (2013)

    Google Scholar 

  8. 8.

    McDonald, P., Henderson, A.R., Heron, S.J.E.: The Biochemistry of Silage, 2nd edn. Chalcombe Publication, London (1991)

    Google Scholar 

  9. 9.

    Zheng, Y., Yates, M., Aung, H., Cheng, Y.S., Yu, C., Guo, H., Zhang, R., Vandergheynst, J., Jenkins, B.M.: Influence of moisture content on microbial activity and silage quality during ensilage of food processing residues. Bioprocess Biosyst. Eng. 34, 987–995 (2011)

    Google Scholar 

  10. 10.

    Yang, S.T.: Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications, 1st edn. Elsevier Science, Amsterdam (2007)

    Google Scholar 

  11. 11.

    Illanes, A.: Lactose: production and upgrading. In: Illanes, A., Guerrero, C., Vera, C., Wilson, L., Conejeros, R., Scott, F. (eds.) Lactose-Derived Prebiotics: A Process Perspective, pp. 1–33. Elsevier Science, Amsterdam (2016)

    Google Scholar 

  12. 12.

    Schingoethe, D.J.: Methods of utilizing whey in ruminant rations. In: Huber, J.T. (ed.) Upgrading Residues and By-products for Animals, pp. 77–98. CRC Press, Boca Raton (2018)

    Google Scholar 

  13. 13.

    Muck, R.E.: Silage microbiology and its control through additives. R. Bras. Zootec. 39, 83–19 (2010)

    Google Scholar 

  14. 14.

    Wilkinson, J.M., Davies, D.R.: The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68, 1–19 (2012)

    Google Scholar 

  15. 15.

    Li, Y., Nishino, N.: Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Lett. Appl. Microbiol. 52, 314–321 (2011)

    Google Scholar 

  16. 16.

    Andrade, E., Gonçalves, A., Mendes-Ferreira, A., Silva, V., Pinheiro, V., Rodrigues, M., Ferreira, L.: A novel feedstuff: ensiling of cowpea (Vigna unguiculata L.) stover and apple (Malus domestica Borkh.) mixtures. Evaluation of the nutritive value, fermentation quality and aerobic stability. J. Sci. Food Agric. 97, 4306–4313 (2017)

    Google Scholar 

  17. 17.

    Kleinschmit, D.H., Kung Junior, L.: A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability de corn and grass and small grain silages. J. Dairy Sci. 89, 4005–4013 (2006)

    Google Scholar 

  18. 18.

    AOAC: Official Methods of Analysis of AOAC International, 15th edn. AOAC International, Arlington (1990)

    Google Scholar 

  19. 19.

    Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Google Scholar 

  20. 20.

    Hall, M.B., Hoover, W.H., Jennings, J.P., Webster, T.K.M.: A method for partitioning neutral detergent-soluble carbohydrates. J. Sci. Food Agric. 79, 2079–2086 (1999)

    Google Scholar 

  21. 21.

    Detmann, E., Valadares Filho, S.C., Pina, D.S., Campos, J.M.S., Paulino, M.F., Oliveira, A.S., Silva, P.A.: Estimation of ether extract digestibility in diets of ruminants: a model under Brazilian conditions. R. Bras. Zootec. 35, 1469–1478 (2006)

    Google Scholar 

  22. 22.

    Detmann, E., Valadares Filho, S.C., Henriques, L.T., Pina, D.S., Paulino, M.F., Valadares, R.F.D., Chizzotti, M.L., Magalhães, K.A.: Estimation of nonfiber carbohydrates digestibility in cattle using the Lucas test approach under Brazilian conditions. R. Bras. Zootec. 35, 1479–1486 (2006)

    Google Scholar 

  23. 23.

    Detmann, E., Pina, D.S., Valadares Filho, S.C., Campos, J.M.S., Paulino, M.F., Oliveira, A.S., Silva, P.A., Henriques, L.T.: Estimation of crude protein digestible fraction in cattle diets under Brazilian conditions. R. Bras. Zootec. 35, 2101–2109 (2006)

    Google Scholar 

  24. 24.

    Detmann, E., Valadares Filho, S.C., Henriques, L.T., Pina, D.S., Paulino, M.F., Magalhães, A.L.R., Figueiredo, D.M., Porto, M.O., Chizzotti, M.L.: Reparametrization of the model based on Surface Law to predict the digestible fraction of neutral detergent fiber in Brazilian cattle. R. Bras. Zootec. 36, 155–164 (2007)

    Google Scholar 

  25. 25.

    Weiss, W.P., Conrad, H.R., St Pierre, N.R.: A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 39, 95–110 (1992)

    Google Scholar 

  26. 26.

    SAS: Statistical Analysis System—SAS 9.0 Help and Documentation. SAS Institute Inc., Cary (2002)

    Google Scholar 

  27. 27.

    Kung Junior, L., Stokes, M.R., Lin, C.J.: Silage additives. In: Buxton, D.R., Muck, R.E., Harrison, J.H. (eds.) Silage Science and Technology, pp. 305–360. American Society of Agronomy, Madison (2003)

    Google Scholar 

  28. 28.

    Silva, D.J., Queiroz, A.C.: Análise de Alimentos: Métodos Químicos e Biológicos, 3rd edn. Universidade Federal de Viçosa, Viçosa (2002)

    Google Scholar 

  29. 29.

    Schmidt, R.J., Kung Junior, L.: The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. J. Dairy Sci. 93, 1616–1624 (2010)

    Google Scholar 

  30. 30.

    Teller, R.S., Schmidt, R.J., Whitlow, L.W., Kung Junior, L.: Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage. J. Dairy Sci. 95, 1428–1436 (2012)

    Google Scholar 

  31. 31.

    Lewandowska, M., Kujawski, W.: Ethanol production from lactose in a fermentation/pervaporation system. J. Food Eng. 79, 430–437 (2007)

    Google Scholar 

  32. 32.

    Santos, E.M., Pereira, O.G., Garcia, R., Ferreira, C.L.L.F., Oliveira, J.S., Silva, T.C.: Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages. J. Dairy Sci. 97, 4423–4432 (2014)

    Google Scholar 

  33. 33.

    Souza Sobrinho, F., Pereira, A.V., Lédo, F.J.S., Botrel, M.A., Oliveira, J.S., Xavier, D.F.: Agronomic evaluation of interspecific hybrids of elephant grass and pearl millet. Pesq. Agropec. Bras. 40, 873–880 (2005)

    Google Scholar 

  34. 34.

    Santos, R.J.C., Lira, M.A., Guim, A., Santos, M.V.F., Dubeux Junior, J.C.B., Mello, A.C.L.: Elephant grass clones for silage production. Sci. Agric. 70, 6–11 (2013)

  35. 35.

    CQBAL 4.0: Brazilian Tables of Feed Composition for Ruminant—Corn silage. https://www.cqbal.com.br/#!/relatorio/alimentos/derivados/listar/?form=W3siaWQiOiJERVJfMDA1OCIsInRpdHVsbyI6Ik1JTEhPIFNJTEFHRU0gLSBTSUxBR0VOUyJ9XQ%3D%3D (2020). Elephant grass: https://www.cqbal.com.br/#!/relatorio/alimentos/derivados/listar/?form=W3siaWQiOiJERVJfMDIxMiIsInRpdHVsbyI6IkNBUElNIEVMRUZBTlRFIFNJTEFHRU0gLSBTSUxBR0VOUyJ9XQ%3D%3D (2020). Accessed 28 February 2020

  36. 36.

    Rego, F.C.A., Ludovico, A., Silva, L.C., Lima, L.D., Santana, E.W., Françoso, M.C.: Fermentation profile, chemical composition and dry matter losses of orange pulp silage with different microbial inoculants. Semin. Cienc. Agrar. 33, 3411–3420 (2012)

    Google Scholar 

  37. 37.

    Tabacco, E., Piano, S., Revello-Chion, A., Borreani, G.: Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 94, 5589–5598 (2011)

    Google Scholar 

  38. 38.

    Ávila, C.L.S., Pinto, J.C., Figueiredo, H.C.P., Morais, A.R., Pereira, O.G., Schwan, R.F.: Aerobic stability of mombaça grass silages treated with Lactobacillus buchneri. R. Bras. Zootec. 38, 779–787 (2009)

    Google Scholar 

  39. 39.

    Tres, T.T., Jobim, C.C., Rossi, R.M., Silva, M.S.D., Poppi, E.C.: High moisture corn silage with added soybeans grains: aerobic stability, ruminal disappearance and performance of dairy cows. Rev. Bras. Saúde Prod. Anim. 15, 248–260 (2014)

    Google Scholar 

  40. 40.

    Balieiro Neto, G., Ferrari Junior, E., Nogueira, J.R., Possenti, R., Paulino, V.T., Bueno, M.S.: Fermentation losses, chemical composition, aerobic stability and apparent digestibility of sugarcane ensiling with chemical and microbial additives. Pesq. Agropec. Bras. 44, 621–630 (2009)

    Google Scholar 

  41. 41.

    Zopollatto, M., Daniel, J.L.P., Nussio, L.G.: Microbial silage additives in Brazil: Review of aspects of ensilage and animal performance. R. Bras. Zootec. 38, 170–189 (2009)

    Google Scholar 

  42. 42.

    Mello, R., Nörnberg, J.L., Rocha, M.G.: Productive and qualitative performance of corn, sorghum and sunflower hybrids for ensiling. Rev. Bras. Agroc. 10, 87–95 (2004)

    Google Scholar 

  43. 43.

    Reich, L.J., Kung Junior, L.: Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Tech. 159, 105–109 (2010)

    Google Scholar 

  44. 44.

    Siqueira, G.R., Reis, R.A., Iturrino-Schocken, R.P., Bernardes, T.F., Pires, A.J.V., Roth, M.T.P., Roth, A.P.T.P.: Chemical and bacterial additives association on the sugar cane ensilage. R. Bras. Zootec. 36, 789–798 (2007)

    Google Scholar 

  45. 45.

    Carvalho, G.G.P., Garcia, R., Pires, A.J.V., Pereira, O.G., Azevêdo, J.A.G., Carvalho, B.M.A., Cavali, J.: Nutritive value of elephantgrass silage wilted or with addition of cocoa meal. R. Bras. Zootec. 36, 1495–1501 (2007)

    Google Scholar 

  46. 46.

    Weinberg, Z.G., Khanal, P., Yildiz, C., Chen, Y., Arieli, A.: Ensiling fermentation products and aerobic stability of corn and sorghum silages. Grassl. Sci. 57, 46–50 (2011)

    Google Scholar 

  47. 47.

    Bernardes, T.F., Reis, R.A., Siqueira, G.R., Amaral, R.C., Pires, A.J.V.: Aerobic stability of total mixed ration and marandugrass silage using microbial or chemical additive. R. Bras. Zootec. 36, 754–762 (2007)

    Google Scholar 

  48. 48.

    Ferreira, D.J., Lana, R.P., Zanine, A.M., Santos, E.M., Veloso, C.M., Ribeiro, G.A.: Silage fermentation and chemical composition of elephant grass inoculated with rumen strains of Streptococcus bovis. Anim. Feed Sci. Technol. 183, 22–28 (2013)

    Google Scholar 

  49. 49.

    Guim, A., Andrade, P., Iturrino-Schocken, R.P., Franco, G.L., Ruggieri, A.C., Malheiros, E.B.: Aerobic stability of wilted grass silages (Pennisetum purpureum, Schum) treated with microbial inoculant. R. Bras. Zootec. 31, 2176–2185 (2002)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Américo Fróes Garcez Neto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcez Neto, A.F., dos Santos, T.M., da Silva, J. et al. Effect of Whey Permeate and Lactobacillus buchneri on Biomass Conservation, Chemical Characteristics and Aerobic Stability of Elephant Grass Silage. Waste Biomass Valor 12, 879–893 (2021). https://doi.org/10.1007/s12649-020-01035-z

Download citation

Keywords

  • Ammonia nitrogen
  • Carbohydrates
  • Effluent
  • Pennisetum purpureum
  • pH
  • Temperature