Valorization of Sugarcane Bagasse to a Platform Chemical (Levulinic Acid) Catalysed by 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate ([BMMim][BF4])

Abstract

The Biofine process is the currently used method for the industrial production of levulinic acid (LA) from biomass. In this process sulfuric acid is used to catalyze the reaction, the former is a corrosive and toxic catalyst. In this work, an environmental friendly catalyst: 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BMMim][BF4]) was used to optimize the LA production from depithed sugarcane bagasse (DSB). The Box–Behnken design (response surface methodology) was used to design the set of experiments with three variables, namely, time, temperature and catalyst loading. The optimum condition for water as a solvent was 100 °C, 7 h and 4 g of a catalyst which yielded a maximum amount of 44.8% of LA from DSB. When different solvents were investigated at the optimum condition for LA production, methyl isobutyl ketone (MIBK) was the best solvent (54.2%). This study also showed that [BMMim][BF4] is capable of theoretically producing 62.1% of LA. The reusability study showed that [BMMim][BF4] can be used for up to four times without losing it activity.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kirchhoff, M.M.: Promoting sustainability through green chemistry. Resour. Conserv. Recycl. 44, 237–243 (2005)

    Google Scholar 

  2. 2.

    Anastas, P., Warner, J.: The 12 Principles of Green Chemistry: Theory and Practice. Oxford University Press, New York (1998)

    Google Scholar 

  3. 3.

    Doble, M., Kruthiventi, A.K.: Introduction. In: Doble, M., Kruthiventi, A.K. (eds.) Green Chemistry and Engineering, pp. 1–26. Academic Press, Cambridge (2007)

    Google Scholar 

  4. 4.

    Hanrahan, G.: Green chemistry and sustainable chemical processes. In: Hanrahan, G. (ed.) Key Concepts in Environmental Chemistry, pp. 297–319. Academic Press, Cambridge (2012)

    Google Scholar 

  5. 5.

    Isac-García, J., Dobado, J.A., Calvo-Flores, F.G., Martínez-García, H.: Green chemistry. In: Isac-García, J., Dobado, J.A., Calvo-Flores, F.G., Martínez-García, H. (eds.) Experimental Organic Chemistry: Laboratory Manual, pp. 409–415. Academic Press, Cambridge (2016)

    Google Scholar 

  6. 6.

    Song, J., Han, B.: Green chemistry: a tool for the sustainable development of the chemical industry. Natl. Sci. Rev. 2, 255–258 (2015)

    Google Scholar 

  7. 7.

    Smith, A.D., Landoll, M., Falls, M., Holtzapple, M.T.: Chemical production from lignocellulosic biomass: thermochemical, sugar and carboxylate platforms. In: Waldron, K. (ed.) Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, pp. 391–414. Woodhead Publishing, Cambridge (2010)

    Google Scholar 

  8. 8.

    Wilson, K., Lee, A.F.: Bio-based chemicals from biorefining: carbohydrate conversion and utilisation. In: Waldron, K. (ed.) Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation, pp. 624–658. Woodhead Publishing, Cambridge (2014)

    Google Scholar 

  9. 9.

    Yan, K., Jarvis, C., Gu, J., Yan, Y.: Production and catalytic transformation of levulinic acid: a platform for speciality chemicals and fuels. Renew. Sustain Energy Rev. 51, 986–997 (2015)

    Google Scholar 

  10. 10.

    Mthembu, L.D.: Production of levulinic acid from sugarcane bagasse, Master’s Thesis, Durban University of Technology (2016)

  11. 11.

    Chandel, A.K., Antunes, F.A.F., Terán-Hilares, R., Cota, J., Ellilä, S., Silveira, M.H.L., da Silva, S.S.: Bioconversion of hemicellulose into ethanol and value-added products: commercialization, trends, and future opportunities. In: Chandel, A.K., Silveira, M.H.L. (eds.) Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products, pp. 97–134. Elsevier, Amsterdam (2018)

    Google Scholar 

  12. 12.

    Rackemann, D.W., Doherty, W.O.S.: The conversion of lignocellulosics to levulinic acid. Biofuels. Bioprod. Bioref. 5, 198–214 (2011)

    Google Scholar 

  13. 13.

    Galletti, A.M.R., Antonetti, C., Luies, V., Licursi, D., Nasso, N.N.: Levulinic acid from waste biomass. BioResources 7, 1824–1835 (2012)

    Google Scholar 

  14. 14.

    Luo, W.H., Deka, U., Beale, A.M., van Eche, E.R.H., Bruijnincx, P.C.A., Wechkhuysen, B.M.: Ruthenium-catalyzed hydrogenation of levulinic acid: influence of the support and solvent on catalyst selectivity and stability. J. Catal. 301, 175–186 (2013)

    Google Scholar 

  15. 15.

    Climent, M.J., Corma, A., Iborra, S.: Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 111, 1072–1133 (2011)

    Google Scholar 

  16. 16.

    Vitz, J., Erdmenger, T., Haensch, C., Schubert, U.S.: Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem. 11, 417 (2009)

    Google Scholar 

  17. 17.

    Dissanayake, N., Thalangamaarachchige, V.D., Troxell, S., Quitevis, E.L., Abidi, N.: Substituent effects on cellulose dissolution in imidazolium-based ionic liquids. Cellulose 25, 6887 (2018)

    Google Scholar 

  18. 18.

    Stepnowski, P.: Sorption, lipophilicity and partitioning phenomena of ionic liquids in environmental systems. In: Letcher, T.M. (ed.) Thermodynamics, Solubility and Environmental Issues, pp. 299–313. Elsevier, Amsterdam (2007)

    Google Scholar 

  19. 19.

    Doble, M., Kruthiventi, A.K.: Alternate solvents. In: Doble, M., Kruthiventi, A.K. (eds.) Green Chemistry and Engineering, pp. 93–104. Academic Press, Cambridge (2007)

    Google Scholar 

  20. 20.

    Ciocirlan, O., Iulian, O.: Properties of pure 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid and its binary mixtures with dimethyl sulfoxide and acetonitrile. J. Chem. Eng. Data. 57, 3142–3148 (2012)

    Google Scholar 

  21. 21.

    Olivier-Bourbigou, H., Magna, L., Morvan, D.: Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A 373, 1–56 (2010)

    Google Scholar 

  22. 22.

    Song, C., Liu, S., Peng, X., Long, J., Lou, W., Li, X.: Catalytic conversion of carbohydrates to levulinate ester over heteropolyanion-based ionic liquids. Chemsuschem 9, 3307–3316 (2016)

    Google Scholar 

  23. 23.

    Zhao, D., Wu, M., Kou, Y., Min, E.: Ionic liquids: applications in catalysis. Catal. Today. 74, 157–189 (2002)

    Google Scholar 

  24. 24.

    Liu, C.Z., Wang, F., Stiles, A.R., Guo, C.: Ionic liquids for biofuel production: opportunities and challenges. Appl. Energy 92, 406–414 (2012)

    Google Scholar 

  25. 25.

    da Costa Lopes, A.M., João, K.G., Morais, A.R.C., Bogel-Łukasik, E., Bogel-Łukasik, R.: Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Process. 1, 3 (2013)

    Google Scholar 

  26. 26.

    Stark, A.: Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ. Sci. 4, 19–32 (2011)

    Google Scholar 

  27. 27.

    Badgujar, K.C., Wilson, L.D., Bhanage, B.M.: Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renew. Sustain. Energy Rev. 102, 266–284 (2019)

    Google Scholar 

  28. 28.

    Ramli, N.A.S., Amin, N.A.S.: Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. Bioenergy Res. 10, 50–63 (2017)

    Google Scholar 

  29. 29.

    Morone, A., Apte, M., Pandey, R.A.: Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renew. Sustain Energy Rev. 51, 548–565 (2015)

    Google Scholar 

  30. 30.

    Balan, V.: Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass. ISRN Biotechnol. 2014, 1–31 (2014)

    Google Scholar 

  31. 31.

    Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990 (2016)

    Google Scholar 

  32. 32.

    He, M.Y., Sun, Y.H., Han, B.X.: Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013)

    Google Scholar 

  33. 33.

    https://www.sasa.org.za/sugar_industry/CaneGrowinginSA.aspx. Accessed 05 March 2019

  34. 34.

    Schmidt, L.M., Mthembu, L.D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., Smirnova, I.: Levulinic acid production integrated into sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Ind. Crop. Prod. 99, 172–178 (2017)

    Google Scholar 

  35. 35.

    Rackemann, D., Doherty, W.: A review on the production of levulinic acid and furanics from sugars. Int. Sugar. J. 115, 28–34 (2012)

    Google Scholar 

  36. 36.

    Clark, J.H., Budarin, V., Deswarte, F.E.I., Hardy, J.J.E., Kerton, F.M., Hunt, A.J.L., Luque, R., Macquarrie, D.J., Milkowski, K., Rodriguez, A.S.O., Tavener, S.J., White, R.J., Wilson, A.J.: Green chemistry and the biorefinery: A partnership for a sustainable future. Green Chem. 8, 853–886 (2006)

    Google Scholar 

  37. 37.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in Biomass, National Renewable Energy Labortaory, NREL/TP-510–4216 (2010)

  38. 38.

    https://www.chem.ucla.edu/~bacher/Specialtopics/extraction.html). Accessed 15 January 2020

  39. 39.

    Ortiz-Cervantes, C., García, J.J.: Hydrogenation of levulinic acid to γ-valerolactone using ruthenium nanoparticles. Inorg. Chim. Acta 397, 124–128 (2013)

    Google Scholar 

  40. 40.

    Hayes, D.J., Ross, J., Hayes, M.H.B., Fitzpatrick, S.W.: The biofine process: production of levulinic acid, furfural and formic acid from lignocellulosic feedstocks. In: Kamm, B., Gruber, P.R., Kamm, M. (eds.) Biorefineries—Industrial Processes and Products: Status Quo and Future Directions, pp. 139–164. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  41. 41.

    Ishizaki, H., Hasumi, K.: Ethanol production from biomass. In: Tojo, S., Hirasawa, T. (eds.) Research Approaches to Sustainable Biomass Systems, pp. 243–258. Academic Press, Cambridge (2014)

    Google Scholar 

  42. 42.

    Yi, S., Su, Y., Qi, B., Su, Z., Wan, Y.: Application of response surface methodology and central composite rotatable design in optimization; the preparation condition of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes. Sep. Purif. Technol. 71, 252–262 (2010)

    Google Scholar 

  43. 43.

    Behera, S.K., Meena, H., Chakraborty, S., Meikap, B.C.: Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 28, 621–629 (2018)

    Google Scholar 

  44. 44.

    Bozell, J.J., Petersen, G.R.: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010)

    Google Scholar 

  45. 45.

    Chem.libretexts.org. Accessed 06 March 2019

  46. 46.

    Tong, X., Li, Y.: Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by Bronsted-acidic ionic liquids. Chem. Sustain Chem. 3, 350–355 (2010)

    Google Scholar 

  47. 47.

    Mukherjee, A., Dumont, M.J., Raghavan, V.: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72, 143–183 (2015)

    Google Scholar 

  48. 48.

    Qi, X., Smith, R.L., Fang, Z.: Production of versatile platform chemical 5- hydroxymethylfurfural from biomass in ionic liquids. In: Fang, Z., Smith Jr., R., Qi, X. (eds.) Production of Biofuels and Chemicals with Ionic liquids: Biofuels Biorefin, pp. 223–254. Springer, Dordrecht (2014)

    Google Scholar 

  49. 49.

    Nhien, L.C., Long, N.V.D., Kim, S., Lee, M.: Design and assessment of hybrid purification processes through a systematic solvent screening for the production of levulinic acid from lignocellulosic biomass. Ind. Eng. Chem. Res. 55, 5180–5189 (2016)

    Google Scholar 

  50. 50.

    Rackemann, D.W., Bartley, J.P., Doherty, W.O.S.: Methanesulfonic acid-catalysed conversion of glucose and xylose mixtures to levulinic acid and furfural. Ind. Crop. Prod. 52, 46–57 (2014)

    Google Scholar 

  51. 51.

    Manzer, L.E.: Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl. Catal. A 272, 249–256 (2004)

    Google Scholar 

  52. 52.

    Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C.: Catalytic hydrogenation of levulinic acid in water into γ-Valerolactone over bulk structure of inexpensive intermetallic Ni-Sn alloy catalysts. Bull. Chem. React. Eng. Catal. 10, 192–200 (2015)

    Google Scholar 

  53. 53.

    Li, W., Xie, J., Lin, H., Zhou, Q.: Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalysed by iridium pincer complexes. Green Chem. 14, 2388–2390 (2012)

    Google Scholar 

  54. 54.

    Feng, H.J., Li, X.C., Qian, H., Zhang, Y.F., Zhang, D.H., Zhao, D., Hong, S.G., Zhang, N.: Efficient and sustainable hydrogenation of levulinic-acid to gamma-valerolactone in aqueous solution over acid-resistant CePO4/Co2 P catalysts. Green Chem. 21, 1743–1756 (2019)

    Google Scholar 

  55. 55.

    de Haan, J.E.: Hydrogenation of levulinic acid to valerolactone in a continuous packed bed reactor. Master’s Thesis, University of Groningen (2013)

Download references

Acknowledgements

The authors would like to show gratitude to National Research Foundation (NRF), L’Oréal-UNESCO for Women in Science Sub-Saharan Africa Regional fellowships and Durban University of Technology for financial support. South Milling Research Institute (SMRI) for the provision of Sugarcane Bagasse.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lethiwe D. Mthembu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 5

Fig. 5
figure5

FTIR scan for LA, where the FTIR scan of LA standard, LA from DSB, and LA from glucose are combined to observe differences and similarities

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mthembu, L.D., Lokhat, D. & Deenadayalu, N. Valorization of Sugarcane Bagasse to a Platform Chemical (Levulinic Acid) Catalysed by 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate ([BMMim][BF4]). Waste Biomass Valor 12, 199–209 (2021). https://doi.org/10.1007/s12649-020-00997-4

Download citation

Keywords

  • Ionic liquids
  • Sugarcane bagasse
  • Levulinic acid
  • Value added products
  • Optimization