Assessment of Prickly Pear Peel Mucilage and Potato Husk Starch for Edible Films Production for Food Packaging Industries

Abstract

Purpose

Agro-industrial waste, being biodegradable and environmentally-benign, is a sustainable resource for edible film production. Edible films were fabricated from by-products, prickly pear peel mucilage (PPM) and potato husk starch (PHS), and characterised for their physical–chemical properties.

Methods

Various films were prepared by varying the PPM, PHS and glycerine (plasticiser) while maintaining a constant amount of vinegar (acidifying agent).

Results

Results showed that the formulation composition influenced the properties of the films. High concentrations of PPM and glycerine led to films with higher thickness, opacity, moisture and water retention capacity (WRC), and the percentage of water solubility (% WS) was influenced by the PHS content. All edible films presented very low water permeability (WP), and thereby good barrier properties. The WS, WRC and WP were closely associated with the PPM and glycerine contents. Consequently, the FTIR and SEM analyses showed similarities between the spectra and images.

Conclusion

The preparation of edible films from agro-industrial wastes, along with their specific application in food packaging, especially for fresh fruits and vegetables, contributes to sustainable alternatives due to the recovery and reuse of the processing residues.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Debeaufort, F., Quezada-Gallo, J.A., Voilley, A.: Edible films and coatings: tomorrow's packagings: a review. Crit. Rev. Food Sci. Nutr. 38(4), 299–313 (1998). https://doi.org/10.1080/10408699891274219

    Article  Google Scholar 

  2. 2.

    Cha, D.S., Chinnan, M.S.: Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr. 44(4), 223–237 (2004). https://doi.org/10.1080/10408690490464276

    Article  Google Scholar 

  3. 3.

    Kester, J.J., Fennema, O.: An edible film of lipid and cellulose ethers: barriers properties to moisture vapor transmission and structure evaluation. J. Food Sci. 54(6), 1383–1389 (1989). https://doi.org/10.1111/j.1365-2621.1989.tb05118.x

    Article  Google Scholar 

  4. 4.

    Pavlath, A.E., Orts, W.: Edible films and coatings: why, what, and how?. In: Hurber, K.C., Embuscado, M. (eds.) Edible Films and Coatings for Food Applications, pp. 1–23. Springer, New York (2009). https://doi.org/10.1007/978-0-387-92824-1_1

    Google Scholar 

  5. 5.

    Olivas, G.I., Barbosa-Cánovas, G.: Edible films and coatings for fruits and vegetables. In: Hurber, K.C., Embuscado, M. (eds.) Edible Films and Coatings for Food Applications, pp. 211–244. Springer, New York (2009). https://doi.org/10.1007/978-0-387-92824-1_7

    Google Scholar 

  6. 6.

    Allegra, A., Inglese, P., Sortino, G., Settanni, L., Todaro, A., Liguori, G.: The influence of Opuntia ficus-indica mucilage edible coating on the quality of ‘Hayward’ kiwifruit slices. Postharvest Biol. Technol. 120, 45–51 (2016). https://doi.org/10.1016/j.postharvbio.2016.05.011

    Article  Google Scholar 

  7. 7.

    Moradi, M., Tajik, H., Rohani, S.M.R., Oromiehíe, A.R., Malekinejad, H., Aliakbarlu, J.: Hadian, M: Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Sci. Technol. 46(2), 477–484 (2012). https://doi.org/10.1016/j.lwt.2011.11.020

    Article  Google Scholar 

  8. 8.

    López-Mata, M.A., Ruiz-Cruz, S., Silva-Beltrán, N.P., De Jesús Ornelas-Paz, J., Zamudio-Flores, P.B., Burruel-Ibarra, S.E.: Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules 18(11), 13735–13753 (2013). https://doi.org/10.3390/molecules181113735

    Article  Google Scholar 

  9. 9.

    Piñeros-Hernández, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S.: Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids 63, 488–495 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.034

    Article  Google Scholar 

  10. 10.

    García, M.A., Pinotti, A., Martino, M.N., Zaritzky, N.E.: Characterization of starch and composite edible films and coatings. In: Hurber, K.C., Embuscado, M. (eds.) Edible Films and Coatings for Food Applications, pp. 169–209. Springer, New York (2009). https://doi.org/10.1007/978-0-387-92824-1_6

    Google Scholar 

  11. 11.

    Andrade, R.M.S., Ferreira, S.L.M., Gonçalves, E.C.B.A.: Development and characterization of edible films based on fruit and vegetable residues. J. Food Sci. 81(2), E412–E418 (2016). https://doi.org/10.1111/1750-3841.13192

    Article  Google Scholar 

  12. 12.

    Romero-Bastida, C.A., Bello-Pérez, L.A., García, M.A., Martino, M.N., Solorza-Feria, J., Zaritzky, N.E.: Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr. Polym. 60(2), 235–244 (2005). https://doi.org/10.1016/j.carbpol.2005.01.004

    Article  Google Scholar 

  13. 13.

    Zahedi, Y., Ghanbarzadeh, B., Sedaghat, N.: Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. J. Food Eng. 100(1), 102–108 (2010). https://doi.org/10.1016/j.jfoodeng.2010.03.033

    Article  Google Scholar 

  14. 14.

    Kurt, A., Kahyaoglu, T.: Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydr. Polym. 104, 50–58 (2014). https://doi.org/10.1016/j.carbpol.2014.01.003

    Article  Google Scholar 

  15. 15.

    Saberi, B., Chockchaisawasdee, S., Golding, J.B., Scarlett, C.J., Stathopoulos, C.E.: Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. Int. J. Biol. Macromol. 104, 345–359 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.051

    Article  Google Scholar 

  16. 16.

    Nouraddini, M., Esmaiili, M., Mohtarami, F.: Development and characterization of edible films based on eggplant flour and corn starch. Int. J. Biol. Macromol. 120, 1639–1645 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.126

    Article  Google Scholar 

  17. 17.

    Araújo, A., Galvão, A., Silva Filho, C., Mendes, F., Oliveira, M., Barbosa, F., Sousa Filho, M., Bastos, M.: Okra mucilage and corn starch bio-based film to be applied in food. Polym. Test. 71, 352–361 (2018). https://doi.org/10.1016/j.polymertesting.2018.09.010

    Article  Google Scholar 

  18. 18.

    Silva, O.A., Pellá, M.G., Pellá, M.G., Caetano, J., Simões, M.R., Bittencourt, P.R.S., Dragunski, D.C.: Synthesis and characterization of a low solubility edible film based on native cassava starch. Int. J. Biol. Macromol. 128, 290–296 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.132

    Article  Google Scholar 

  19. 19.

    Maniglia, B.C., Tessaro, L., Ramos, A.P., Tapia-Blácido, D.R.: Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids 89, 143–152 (2019). https://doi.org/10.1016/j.foodhyd.2018.10.038

    Article  Google Scholar 

  20. 20.

    Tapia-Blácido, D.R., Maniglia, B.C., Martelli-Tosi, M., Passos, V.F.: Agroindustrial biomass: potential materials for biopolymeric film production. In: Masuelli, M., (ed.) Biopackaging, 1st ed. pp. 226–245, CRC Press, Boca Raton (2017). https://doi.org/10.1201/9781315152349-6

    Google Scholar 

  21. 21.

    Anchundia, K., Santacruz, S., Coloma, J.: Physical characterization of edible films based on banana peel (Musa paradisiaca). Rev. Chil. Nutr. 43(4), 394–399 (2016). https://doi.org/10.4067/S0717-75182016000400009 (in Spanish)

    Article  Google Scholar 

  22. 22.

    Cavalcante Fai, A.E., de Souza Alves, M.R., Vinhoso Bruno, N., de Andrade Gonçalves, B.: Production of edible coating based on fruit and vegetable residues: application on minimally processed carrot (Daucus carota L.). Sci. Agropecu. 6(1), 59–68 (2015). https://doi.org/10.17268/sci.agropecu.2015.01.06

    Article  Google Scholar 

  23. 23.

    Park, S., Zhao, Y.: Development and characterization of edible films from cranberry pomace extracts. J. Food Sci. 71(2), E95–E101 (2006). https://doi.org/10.1111/j.1365-2621.2006.tb08902.x

    Article  Google Scholar 

  24. 24.

    Guadarrama-Lezama, A.Y., Castaño, J., Velázquez, G., Carrillo-Navas, H., Alvarez-Ramírez, J.: Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films. J. Food Sci. Technol. 55(9), 3739–3748 (2018). https://doi.org/10.1007/s13197-018-3304-x

    Article  Google Scholar 

  25. 25.

    Gheribi, R., Puchot, L., Verge, P., Jaoued-Grayaa, N., Mezni, M., Habibi, Y., Khwaldia, K.: Development of plasticized edible films from Opuntia ficus-indica mucilage: a comparative study of various polyol plasticizers. Carbohydr. Polym. 190, 204–211 (2018). https://doi.org/10.1016/j.carbpol.2018.02.085

    Article  Google Scholar 

  26. 26.

    Pérez-Gago, M.B., Krochta, J.M.: Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J. Agric. Food Chem. 49(2), 996–1002 (2001). https://doi.org/10.1021/jf000615f

    Article  Google Scholar 

  27. 27.

    Gómez-Guillén, M.C., Ihl, M., Bifani, V., Silva, A., Montero, P.: Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids 21(7), 1133–1143 (2007). https://doi.org/10.1016/j.foodhyd.2006.08.006

    Article  Google Scholar 

  28. 28.

    FAOSTAT. Food and Agriculture Organization of the United Nations. Statistics Division. https://www.fao.org/faostat/es/#data/QC (2007). Accessed 22 August 2019

  29. 29.

    Arapoglou, D., Varzakas, Th, Vlyssides, A., Israilides, C.: Ethanol production from potato peel waste (PPW). Waste Manag. 30(10), 1898–1902 (2010). https://doi.org/10.1016/j.wasman.2010.04.017

    Article  Google Scholar 

  30. 30.

    Wu, D.: Recycle technology for potato peel waste processing: a review. Proced. Environ. Sci. 31, 103–107 (2016). https://doi.org/10.1016/j.proenv.2016.02.014

    Article  Google Scholar 

  31. 31.

    Ncobela, C.N., Kanengoni, A.T., Hlatini, V.A., Thomas, R.S., Chimonyo, M.: A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed Sci. Technol. 227, 107–117 (2017). https://doi.org/10.1016/j.anifeedsci.2017.02.008

    Article  Google Scholar 

  32. 32.

    Mora, M.: Mercado, estrategias y limitaciones de comunicación. In: Inglese, P., Jacobo, C.M., Nefzaoui, A., Sáenz, C. (eds.) Ecología del Cultivo, Manejo y Usos del Nopal, pp. 199–206. FAO-ICARDA. Rome, Italy (2018). ISBN:978-92-5-130494-5

  33. 33.

    Koubaa, M., Ktata, A., Barba, F.J., Grimi, N., Mhemdi, H., Bouaziz, F., Driss, D., Chaabouni, S.E.: Water-soluble polysaccharides from Opuntia stricta Haw. fruit peels: recovery, identification and evaluation of their antioxidant activities. Int. Agrophys. 29(3), 299–306 (2015). https://doi.org/10.1515/intag-2015-0035

    Article  Google Scholar 

  34. 34.

    Majdoub, H., Roudesli, S., Deratani, A.: Polysaccharides from prickly pear peel and nopals of Opuntia focus-indica: extraction, characterization and polyelectrolyte behaviour. Polym. Int. 50(5), 552–560 (2001). https://doi.org/10.1002/pi.665

    Article  Google Scholar 

  35. 35.

    Valcárcel-Yamani, B., Rondán-Sanabria, G.G., Finardi-Filho, F.: The physical, chemical and functional characterization of starches from Andean tubers: oca (Oxalis tuberosa Molina), olluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz & Pavón). Braz. J. Pharm. Sci. 49(3), 453–464 (2013). https://doi.org/10.1590/S1984-82502013000300007

    Article  Google Scholar 

  36. 36.

    Espino-Díaz, M., De Jesús Ornelas-Paz, J., Martínez-Téllez, M.A., Santillán, C., Barbosa-Cánovas, G.V. Zamudio-Flores, P.B., Olivas G.I.: Development and characterization of edible films based on mucilage of Opuntia ficus-indica (L.). J. Food Sci. 75(6), E347–E352 (2010). https://doi.org/10.1111/j.1750-3841.2010.01661.x

    Article  Google Scholar 

  37. 37.

    Pelissari, F.M., Andrade-Mahecha, M.M., do Amaral Sobral, P.J., Menegalli, F.C.: Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids. 30(2), 681–690 (2013). https://doi.org/10.1016/j.foodhyd.2012.08.007

    Article  Google Scholar 

  38. 38.

    Gómez-Estaca, J., Giménez, B., Montero, P., Gómez-Guillén, M.C.: Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J. Food Eng. 92(1), 78–85 (2009). https://doi.org/10.1016/j.jfoodeng.2008.10.024

    Article  Google Scholar 

  39. 39.

    AOAC: Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists, Washington (2005)

    Google Scholar 

  40. 40.

    Basiak, E., Galus, S., Lenart, A.: Characterization of composite edible films based on wheat starch and whey-protein isolate. Int. J. Food Sci. Technol. 50(2), 372–380 (2015). https://doi.org/10.1111/ijfs.12628

    Article  Google Scholar 

  41. 41.

    ASTM: ASTM E96-95 Standard Test Methods for Water Vapor Transmission of Materials, pp. 1–8. American Society for Testing and Materials, West Conshohocken (1995)

  42. 42.

    Gennadios, A., Weller, C.L., Gooding, C.H.: Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21(4), 395–409 (1994). https://doi.org/10.1016/0260-8774(94)90062-0

    Article  Google Scholar 

  43. 43.

    Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M., Robledo, C.W.: InfoStat version 2011. Universidad Nacional de Córdoba, Argentina, Grupo InfoStat FCA (2011)

  44. 44.

    Al-Hassan, A.A., Norziah, M.H.: Starch–gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids 26(1), 108–117 (2012). https://doi.org/10.1016/j.foodhyd.2011.04.015

    Article  Google Scholar 

  45. 45.

    Bastos, M.D.S.R., da Silva Laurentino, L., Canuto, K.M., Mendes, L.G., Martins, C.M., Frota Silva, S.M., Furtado, R.F., Kim, S., Biswas, A., Cheng, H.N.: Physical and mechanical testing of essential oil-embedded cellulose ester films. Polym. Test. 49, 156–161 (2016). https://doi.org/10.1016/j.polymertesting.2015.11.006

    Article  Google Scholar 

  46. 46.

    Han, J.H., Gennadios, A.: Edible films and coatings: a review. In: Han, J.H. (ed.) Innovations in Food Packaging, pp. 213–255. Academy Press, Oxford (2005). https://doi.org/10.1016/B978-012311632-1/50047-4

    Google Scholar 

  47. 47.

    Cao, W., Cheng, M., Ao, Q., Gong, Y., Zhao, N., Zhang, X.: Physical, mechanical and degradation properties, and Schwann cell affinity of cross-linked chitosan films. J. Biomater. Sci. 16(6), 791–807 (2005). https://doi.org/10.1163/1568562053992496

    Article  Google Scholar 

  48. 48.

    Pacheco, N., Naal-Ek, M.G., Ayora-Talavera, T., Shirai, K., Román-Guerrero, A., Fabela-Morón, M.F., Cuevas-Bernardino, J.C.: Effect of bio-chemical chitosan and gallic acid into rheology and physicochemical properties of ternary edible films. Int. J. Biol. Macromol. 125, 149–158 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.060

    Article  Google Scholar 

  49. 49.

    Homez-Jara, A., Daza, L.D., Aguirre, D.M., Muñoz, J.A., Solanilla, J.F., Váquiro, H.A.: Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Int. J. Biol. Macromol. 113, 1233–1240 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.057

    Article  Google Scholar 

  50. 50.

    Srinivasa, P.C., Ramesh, M.N., Tharanathan, R.N.: Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids 21(7), 1113–1122 (2007). https://doi.org/10.1016/j.foodhyd.2006.08.005

    Article  Google Scholar 

  51. 51.

    Kowsik, P.V., Mazumder, N.: Structural and chemical characterization of rice and potato starch granules using microscopy and spectroscopy. Microsc. Res. Tech. 81(12), 1533–1540 (2018). https://doi.org/10.1002/jemt.23160

    Article  Google Scholar 

  52. 52.

    Madera-Santana, T.J., Vargas-Rodríguez, L., Núñez-Colín, C.A., González-García, G., Peña-Caballero, V., Núñez-Gastélum, J.A., Gallegos-Vázquez, C., Rodríguez-Núñez, J.R.: Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: chemical, morphological, structural and thermal characterization. CYTA-J. Food. 16(1), 650–657 (2018). https://doi.org/10.1080/19476337.2018.1454988

    Article  Google Scholar 

  53. 53.

    Tee, Y.B., Tee, L.T., Daengprok, W., Talib, R.A.: Chemical, physical, and barrier properties of edible film from flaxseed mucilage. BioResources 12(3), 6656–6664 (2017). https://doi.org/10.15376/biores.12.3.6656-6664

    Article  Google Scholar 

  54. 54.

    Zhang, Y., Han, J.H.: Plasticization of pea starch films with monosaccharides and polyols. J. Food Sci. 71(6), E253–E261 (2006). https://doi.org/10.1111/j.1750-3841.2006.00075.x

    Article  Google Scholar 

  55. 55.

    Park, J.W., Im, S.S., Kim, S.H., Kim, Y.H.: Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polym. Eng. Sci. 40(12), 2539–2550 (2000). https://doi.org/10.1002/pen.11384

    Article  Google Scholar 

  56. 56.

    Cerqueira, M.A., Souza, B.W.S., Teixeira, J.A., Vicente, A.A.: Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—a comparative study. Food Hydrocolloids 27(1), 175–184 (2012). https://doi.org/10.1016/j.foodhyd.2011.07.007

    Article  Google Scholar 

  57. 57.

    Fox, D.I., Pichler, T., Yeh, D.H., Alcantar, N.A.: Removing heavy metals in water: the interaction of cactus mucilage and arsenate (As (V)). Environ. Sci. Technol. 46(8), 4553–4559 (2012). https://doi.org/10.1021/es2021999

    Article  Google Scholar 

  58. 58.

    Chen, Y., Zhang, J.G., Sun, H.J., Wei, Z.J.: Pectin from Abelmoschus esculentus: optimization of extraction and rheological properties. Int. J. Biol. Macromol. 70, 498–505 (2014). https://doi.org/10.1016/j.ijbiomac.2014.07.024

    Article  Google Scholar 

  59. 59.

    Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J.P.F.G., Van Griensven, L.J.L.D.: Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 129(4), 1667–1675 (2011). https://doi.org/10.1016/j.foodchem.2011.06.029

    Article  Google Scholar 

  60. 60.

    van Soest, J.J.G., Tournois, H., de Wit, D., Vliegenthart, J.F.G.: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 279, 201–214 (1995). https://doi.org/10.1016/0008-6215(95)00270-7

    Article  Google Scholar 

  61. 61.

    Lin, S.Y., Chen, K.S., Run-Chu, L.: Organic esters of plasticizers affecting the water absorption, adhesive property, glass transition temperature and plasticizer permanence of Eudragit acrylic films. J. Controll. Release 68(3), 343–350 (2000). https://doi.org/10.1016/S0168-3659(00)00259-5

    Article  Google Scholar 

  62. 62.

    Bonilla, J., Atarés, L., Vargas, M., Chiralt, A.: Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J. Food Eng. 114(3), 303–312 (2013). https://doi.org/10.1016/j.jfoodeng.2012.08.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Vicerrectorado de Investigación of the Universidad Nacional Micaela Bastidas de Apurímac (UNAMBA) for financing the research and diffusion support; and the Escuela Académico Profesional de Ingeniería Agroindustrial of UNAMBA for access to equipment; the participation of the Centro de Investigación y de Estudios Avanzados del IPN CINVESTAV-IPN Unidad Mérida Yucatán, México, Laboratorio Nacional de Nano y Biomateriales (LANNBIO) projets FOMIX-YUCATAN 2008-108160; and CONACYT LAB-2009-01-123913, 188345, 204822. Special thanks to M.C. Dora A. Huerta Quintanilla for technical assistance in the SEM analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Chaquilla-Quilca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayquipa-Cuellar, E., Salcedo-Sucasaca, L., Azamar-Barrios, J.A. et al. Assessment of Prickly Pear Peel Mucilage and Potato Husk Starch for Edible Films Production for Food Packaging Industries. Waste Biomass Valor 12, 321–331 (2021). https://doi.org/10.1007/s12649-020-00981-y

Download citation

Keywords

  • Agroindustry by-product
  • Edible film
  • Natural polymer
  • Physical–chemical property