Nutrient Dynamics and Plant Response in Soil to Organic Chicken Manure-Based Fertilizers

Abstract

Changing dietary habits towards poultry-based foods, combined with the population growth perturbed global nutrient balance. Nutrient recovery and recycling are generally considered necessary for sustainable agricultural development that also affects land use, its management, as well as air pollution quality and human health. To assess the impacts of recycled organic solid waste-based fertilizers obtained via granulation with or without mineral fertilizers for balanced nutrient content, farmland soil experiments were utilized to research long-term fertilization effects with chicken manure. Of particular interest in this study was determining the rates of nutrient removal from the soil during the intense crop growth and whether its quality and composition can be maintained with nutrients delivered via chicken manure. In control and mineral fertilizer experiments without added organic fertilizer materials after the first year, a decrease in available P2O5 and K2O in soil were observed while after 2 t/ha application OGF available P2O5 did not change while available K2O even increased. Additionally, OGF applied at 2 t/ha increased wheat straw yield by 21.3% but was not statistically significant for grain yield. Spring rapeseed yield fertilized with 2 t/ha OGF increased by 28.4%. The rapeseed plant mass increase was 23.1%. Potato tuber yield increased by 22.6% when 2 t/ha OGF was applied and by 21.2 and 26.9% when 1 and 2 t/ha OMF, respectively. This study showed that the application of chicken manure derived fertilizer materials can maintain stable nutrient content in soil and minimize mineral fertilizer influx into the environment.

Graphic Abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    International Fertilizer Association (IFA): Fertilizer outlook 2017–2021. In: IFA Annual Conference, Marrakech, 22–24 May 2017

  2. 2.

    Baltrusaitis, J.: Sustainable ammonia production. ACS Sustain. Chem. Eng. 5, 9527 (2017). https://doi.org/10.1021/acssuschemeng.7b03719

    Article  Google Scholar 

  3. 3.

    Schrock, R.R.: Reduction of dinitrogen. Proc. Natl. Acad. Sci. 103, 17087 (2006). https://doi.org/10.1073/pnas.0603633103

    Article  Google Scholar 

  4. 4.

    Cordell, D., Rosemarin, A., Schröder, J.J., Smit, A.L.: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758 (2011). https://doi.org/10.1016/j.chemosphere.2011.02.032

    Article  Google Scholar 

  5. 5.

    Schröder, J.J., Smit, A.L., Cordell, D., Rosemarin, A.: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84, 822–831 (2011). https://doi.org/10.1016/j.chemosphere.2011.01.065

    Article  Google Scholar 

  6. 6.

    Cordell, D., White, S.: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011). https://doi.org/10.3390/su3102027

    Article  Google Scholar 

  7. 7.

    Cakmak, I.: Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247, 3–24 (2002). https://doi.org/10.1023/A:1021194511492

    Article  Google Scholar 

  8. 8.

    Mazeika, R., Staugaitis, G., Baltrusaitis, J.: Engineered pelletized organo-mineral fertilizers (OMF) from poultry manure, diammonium phosphate and potassium chloride. ACS Sustain. Chem. Eng. 4, 2279–2285 (2016). https://doi.org/10.1021/acssuschemeng.5b01748

    Article  Google Scholar 

  9. 9.

    Mazeika, R., Dambrauskas, T., Baltakys, K., Mikolajunas, M., Staugaitis, G., Virzonis, D., Baltrusaitis, J.: Molecular and morphological structure of poultry manure derived organo-mineral fertilizers (OMFs). ACS Sustain. Chem. Eng. 4, 4788–4796 (2016). https://doi.org/10.1021/acssuschemeng.6b00984

    Article  Google Scholar 

  10. 10.

    Zebarth, B.J., Chabot, R., Coulombe, J., Simard, R.R., Douheret, J., Tremblay, N.: Pelletized organo-mineral fertilizer product as a nitrogen source for potato production. Can. J. Soil Sci. 85, 387–395 (2005). https://doi.org/10.4141/S04-071

    Article  Google Scholar 

  11. 11.

    Ojo, J.A., Olowoake, A.A., Obembe, A.: Efficacy of organomineral fertilizer and un-amended compost on the growth and yield of watermelon (Citrullus lanatus Thumb) in Ilorin Southern Guinea Savanna zone of Nigeria. Int. J. Recycl. Org. Waste Agric. 3, 121–125 (2014). https://doi.org/10.1007/s40093-014-0073-z

    Article  Google Scholar 

  12. 12.

    Olaniyi, J.O., Ogunbiyi, E.M., Alagbe, D.D.: Effects of organo-mineral fertilizers on growth, yield and mineral nutrients uptake in cucumber. J. Anim. Plant Sci. 5, 437–442 (2009)

    Google Scholar 

  13. 13.

    Gasser, M.O., Laverdière, M.R., Lagacé, R., Caron, J.: Impact of potato-cereal rotations and slurry applications on nitrate leaching and nitrogen balance in sandy soils. Can. J. Soil Sci. 82, 469–479 (2002). https://doi.org/10.4141/s01-050

    Article  Google Scholar 

  14. 14.

    Tejada, M., Benitez, C., Gonzalez, J.L.: Effects of application of two organomineral fertilizers on nutrient leaching losses and wheat crop. Agron. J. 97, 960 (2005). https://doi.org/10.2134/agronj2004.0092

    Article  Google Scholar 

  15. 15.

    Belay, A., Claassens, A.S., Wehner, F.C., de Beer, J.M.: Influence of residual manure on selected nutrient elements and microbial composition of soil under long-term crop rotation. South African J. Plant Soil. 18, 1–6 (2001). https://doi.org/10.1080/02571862.2001.10634392

    Article  Google Scholar 

  16. 16.

    Kominko, H., Gorazda, K., Wzorek, Z.: The possibility of organo-mineral fertilizer production from sewage sludge. Waste Biomass Valor. (2017). https://doi.org/10.1007/s12649-016-9805-9

    Article  Google Scholar 

  17. 17.

    Eghball, B., Binford, G.D., Baltensperger, D.D.: Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 25, 1339–1343 (1996). https://doi.org/10.2134/jeq1996.00472425002500060024x

    Article  Google Scholar 

  18. 18.

    Usman, K., Khan, S., Ghulam, S., Khan, M.U., Khan, N.: Sewage sludge: an important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 3, 1708–1721 (2012)

    Article  Google Scholar 

  19. 19.

    Lin, Y., Ye, G., Kuzyakov, Y., Liu, D., Fan, J., Ding, W.: Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019). https://doi.org/10.1016/j.soilbio.2019.03.030

    Article  Google Scholar 

  20. 20.

    Hartmann, M., Frey, B., Mayer, J., Mäder, P., Widmer, F.: Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015). https://doi.org/10.1038/ismej.2014.210

    Article  Google Scholar 

  21. 21.

    Deeks, L.K., Chaney, K., Murray, C., Sakrabani, R., Gedara, S., Le, M.S., Tyrrel, S., Pawlett, M., Read, R., Smith, G.H.: A new sludge-derived organo-mineral fertilizer gives similar crop yields as conventional fertilizers. Agron. Sustain. Dev. 33, 539–549 (2013). https://doi.org/10.1007/s13593-013-0135-z

    Article  Google Scholar 

  22. 22.

    Corrêa, J.C., Grohskopf, M.A., Nicoloso, R.D.S., Lourenço, K.S., Martini, R.: Organic, organomineral, and mineral fertilizers with urease and nitrification inhibitors for wheat and corn under no-tillage. Pesqui. Agropecu. Bras. 51, 916–924 (2016). https://doi.org/10.1590/s0100-204x2016000800003

    Article  Google Scholar 

  23. 23.

    Saha, B.K., Rose, M.T., Wong, V., Cavagnaro, T.R., Patti, A.F.: Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. Sci. Total Environ. 601–602, 1496–1504 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.270

    Article  Google Scholar 

  24. 24.

    Olivério, J.L., Boscariol, F.C., Mantelatto, P.E., César, A.R.P., Ciambelli, J.R.P., Amaral-Gurgel, M.N.D., De Souza, R.T.G.: Integrated production of organomineral biofertiliser (BIOFOM®) using by-products from the sugar and ethanol agro-industry, associated with the cogeneration of energy. Sugar Technol. 13, 17–22 (2011). https://doi.org/10.1007/s12355-011-0069-1

    Article  Google Scholar 

  25. 25.

    Eghball, B., Ginting, D., Gilley, J.E.: Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 96, 442 (2004). https://doi.org/10.2134/agronj2004.4420

    Article  Google Scholar 

  26. 26.

    Zörb, C., Senbayram, M., Peiter, E.: Potassium in agriculture—status and perspectives. J. Plant Physiol. 171, 656–669 (2014). https://doi.org/10.1016/j.jplph.2013.08.008

    Article  Google Scholar 

  27. 27.

    Bélec, C., Dextraze, L., Tremblay, N., Coulombe, J., Lamy, P., Chabot, R.: A dehydrated organo-mineral fertilizer as a nitrogen source for broccoli. Acta Hortic 627, 73–79 (2003). https://doi.org/10.17660/actahortic.2003.627.8

    Article  Google Scholar 

  28. 28.

    Satyanarayana, V., Vara-Prasad, P.V., Murthy, V.R.K., Boote, K.J.: Influence of integrated use of farmyard manure and inorganic fertilizers on yield and yield components of irrigated lowland rice. J. Plant Nutr. 25, 2081–2090 (2002). https://doi.org/10.1081/pln-120014062

    Article  Google Scholar 

  29. 29.

    Fytili, D., Zabaniotou, A.Ã.: Utilization of sewage sludge in EU application of old and new methods—a review. Renew. Sustain. Energy Rev. 12, 116–140 (2008). https://doi.org/10.1016/j.rser.2006.05.014

    Article  Google Scholar 

  30. 30.

    Koch, M., Kruse, J., Eichler-löbermann, B., Zimmer, D., Willbold, S., Leinweber, P., Siebers, N.: Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: evidence from sequential fractionation, P K-edge XANES, and P NMR spectroscopy. Geoderma 316, 115–126 (2018). https://doi.org/10.1016/j.geoderma.2017.12.003

    Article  Google Scholar 

  31. 31.

    Gondek, K., Filipek-Mazur, B.: The effects of mineral treatment and the amendments by organic and organomineral fertilisers on the crop yield, plant nutrient status and soil properties. Plant Soil Environ. 51, 34–45 (2005)

    Article  Google Scholar 

  32. 32.

    Sakurada, R., Batista, M.A., Inoue, T.T., Muniz, A.S., Pagliari, P.H.: Organomineral phosphate fertilizers: agronomic efficiency and residual effect on initial corn development. Agron. J. 108, 2050–2059 (2016). https://doi.org/10.2134/agronj2015.0543

    Article  Google Scholar 

  33. 33.

    Frazão, J.J., Benites, V.D.M., Ribeiro, J.V.S., Pierobon, V.M., Lavres, J.: Agronomic effectiveness of a granular poultry litter-derived organomineral phosphate fertilizer in tropical soils: soil phosphorus fractionation and plant responses. Geoderma 337, 582–593 (2019). https://doi.org/10.1016/j.geoderma.2018

    Article  Google Scholar 

  34. 34.

    Saha, B.K., Rose, M.T., Wong, V.N.L., Cavagnaro, T.R., Patti, A.F.: Nitrogen dynamics in soil fertilized with slow release brown coal-urea fertilizers. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-32787-3

    Article  Google Scholar 

  35. 35.

    Ågren, G.I.: Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 39, 153–170 (2008). https://doi.org/10.1146/annurev.ecolsys.39.110707.173515

    Article  Google Scholar 

  36. 36.

    Sharara, M.A., Runge, T., Larson, R., Primm, J.G.: Techno-economic optimization of community-based manure processing. Agric. Syst. 161, 117–123 (2018). https://doi.org/10.1016/j.agsy.2018.01.006

    Article  Google Scholar 

  37. 37.

    Sarma, B., Farooq, M., Gogoi, N., Borkotoki, B., Kataki, R., Garg, A.: Soil organic carbon dynamics in wheat—green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: a comparative study. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.08.004

    Article  Google Scholar 

  38. 38.

    Schlegel, A.J., Assefa, Y., Bond, H.D., Haag, L.A., Stone, L.R.: Changes in soil nutrients after 10 years of cattle manure and swine effluent application. Soil Tillage Res. 172, 48–58 (2017). https://doi.org/10.1016/j.still.2017.05.004

    Article  Google Scholar 

  39. 39.

    Zhang, W., Liu, X., Wang, Q., Zhang, H., Li, M., Song, B., Zhao, Z.: Effects of potassium fertilization on potato starch physicochemical properties. Int. J. Biol. Macromol. 117, 467–472 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.131

    Article  Google Scholar 

  40. 40.

    The Commission of the European Communities: Regulation (EC) No 2316/1999 of 22 October 1999 laying down detailed rules for the application of Council Regulation (EC) No. 1251/1999 establishing a support system for producers of certain arable crops. Off. J. Eur. Commun. 280, 43–65 (1999)

  41. 41.

    Alexander, J., Auðunsson, G.A., Benford, D., Cockburn, A., Cravedi, J., Dogliotti, E., Domenico, A.Di, Férnandez-cruz, M.L., Fürst, P., Galli, C.L., Grandjean, P., Gzyl, J., Johansson, N., Mutti, A., Schlatter, J., Leeuwen, R.Van, Van, C.: Glucosinolates as undesirable substances in animal feed 1 scientific panel on contaminants in the food chain adopted on 27 November 2007. Eur. Food Saf. Auth. J. 590, 1–76 (2008)

    Google Scholar 

  42. 42.

    Hamouz, K., Lachman, J., Dvořák, P., Pivec, V.: The effect of ecological growing on the potatoes yield and quality, pp. 397–402. Plant, Soil Environ (2005)

    Google Scholar 

  43. 43.

    Denis, L.: Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev. 30, 33–41 (2010)

    Article  Google Scholar 

  44. 44.

    Lombardo, S., Pandino, G., Mauromicale, G.: The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 62, 189–196 (2017). https://doi.org/10.1016/j.jfca.2017.05.014

    Article  Google Scholar 

  45. 45.

    Pobereżny, J., Wszelaczyńska, E., Wichrowska, D., Jaskulski, D.: Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation simplifications applied and storage. Chil. J. Agric. Res. 75, 42–49 (2015). https://doi.org/10.4067/S0718-58392015000100006

    Article  Google Scholar 

  46. 46.

    Skrabule, I., Vaivode, A.: Influence of nitrogen on potato productivity and nutrient use efficiency. Proc. Latv. Acad. Sci. 67, 247–253 (2013). https://doi.org/10.2478/prolas-2013-0043

    Article  Google Scholar 

  47. 47.

    Ravindran, B., Contreras-Ramos, S.M., Wong, J.W.C., Selvam, A., Sekaran, G.: Nutrient and enzymatic changes of hydrolysed tannery solid waste treated with epigeic earthworm Eudrilus eugeniae and phytotoxicity assessment on selected commercial crops. Environ. Sci. Pollut. Res. 21, 641–651 (2014). https://doi.org/10.1007/s11356-013-1897-1

    Article  Google Scholar 

  48. 48.

    Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A.: Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 587, 1–14 (2013)

    Google Scholar 

  49. 49.

    Parastesh, F., Alikhani, H.A., Etesami, H.: Vermicompost enriched with phosphate solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2019.02.234

    Article  Google Scholar 

  50. 50.

    Siddique, M.T., Robinson, J.S.: Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. J. Environ. Qual. 32, 1114–1121 (2003)

    Article  Google Scholar 

  51. 51.

    Liu, K., Han, T., Huang, J., Huang, Q., Li, D., Hu, Z., Yu, X.: Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma 352, 160–170 (2019). https://doi.org/10.1016/j.geoderma.2019.06.007

    Article  Google Scholar 

  52. 52.

    Sharma, A., Jalali, V.K., Arora, S.: Non-exchangeable potassium release and its removal in foot-hill soils of North-west Himalayas. CATENA 82, 112–117 (2010). https://doi.org/10.1016/j.catena.2010.05.009

    Article  Google Scholar 

  53. 53.

    Urso, J.H., Gilbertson, L.M.: Atom conversion efficiency: a new sustainability metric applied to nitrogen and phosphorus use in agriculture. ACS Sustain. Chem. Eng. 6, 4453–4463 (2018). https://doi.org/10.1021/acssuschemeng.7b03600

    Article  Google Scholar 

Download references

Acknowledgments

J.B. acknowledges partial financial support from the USA National Science Foundation (NSF) under Grant CHE 1710120. R.M., G.S., J.A., A.M., I.N., D.S., L.Z and K.R. are grateful for the financial support for this work provided by the CEO of the “KG Group” (Kaunas, Lithuania) Dr. Tautvydas Barstys under Agreement No. 332/2013 between “KG Group” and the Agrochemical Research Laboratory of the Lithuanian Research Centre for Agriculture and Forestry.

Author information

Affiliations

Authors

Contributions

JA, AM and DS performed field experiments. IN, KR and DD performed laboratory analyses. RM, GS and JB performed experiment design, data processing and wrote the manuscript.

Corresponding author

Correspondence to Jonas Baltrusaitis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mažeika, R., Arbačiauskas, J., Masevičienė, A. et al. Nutrient Dynamics and Plant Response in Soil to Organic Chicken Manure-Based Fertilizers. Waste Biomass Valor 12, 371–382 (2021). https://doi.org/10.1007/s12649-020-00978-7

Download citation

Keywords

  • Chicken manure
  • Organic granulated fertilizers
  • Spring wheat
  • Spring rapeseed
  • Potato