Abstract
The management of dredging sediments and plastic waste is of increasing environmental, societal, and economic importance. To address this, we produced lightweight aggregates composed of 70% sediment based mineral filler and 30% thermoplastic waste containing polypropylene, polyethylene, and polystyrene. When tested, the aggregates satisfied the requirements of the European Standard EN 13055-1 for lightweight aggregates and exhibited good mechanical properties and low water absorption compared to natural aggregates. Based on these results, the formulated lightweight aggregates were found to be suitable for use as a partial replacement for up to 30% of the natural sand in mortar formulations.
Graphic Abstract

This is a preview of subscription content, access via your institution.










References
- 1.
Snellings, R., Cizer, Ö., Horckmans, L., Durdziński, P.T., Dierckx, P., Nielsen, P., Van Balen, K., Vandewalle, L.: Properties and pozzolanic reactivity of flash calcined dredging sediments. Appl. Clay Sci. 129, 35–39 (2016). https://doi.org/10.1016/j.clay.2016.04.019
- 2.
Pascal, M.O., Denis, M.D., Marie, M.J.J., Edine, M.A.N., Claude, M.A., Bruno, M.D., Xavier, M.M.F., Gérard, M.B.: Soutenue le 13 mai 2004 devant la Commission d’examen, 299
- 3.
Dubois, V., Abriak, N.E., Zentar, R., Ballivy, G.: The use of marine sediments as a pavement base material. Waste Manag. 29, 774–782 (2009). https://doi.org/10.1016/j.wasman.2008.05.004
- 4.
Kasmi, A., Abriak, N.-E., Benzerzour, M., Azrar, H.: Environmental impact and mechanical behavior study of experimental road made with river sediments: recycling of river sediments in road construction. J. Mater. Cycles Waste Manag. 19, 1405–1414 (2017). https://doi.org/10.1007/s10163-016-0529-5
- 5.
Cappuyns, V., Deweirt, V., Rousseau, S.: Dredged sediments as a resource for brick production: possibilities and barriers from a consumers’ perspective. Waste Manag. 38, 372–380 (2015). https://doi.org/10.1016/j.wasman.2014.12.025
- 6.
Maherzi, W., Benzerzour, M., Mamindy-Pajany, Y., van Veen, E., Boutouil, M., Abriak, N.-E.: Beneficial reuse of Brest-Harbor (France)-dredged sediment as alternative material in road building laboratory investigations. Environ. Technol. 39(2018), 566–580 (2018). https://doi.org/10.1080/09593330.2017.1308440
- 7.
Brakni, S., Abriak, N.E., Hequette, A.: Formulation of artificial aggregates from dredged harbour sediments for coastline stabilization. Environ. Technol. 30, 849–854 (2009). https://doi.org/10.1080/09593330902990154
- 8.
Janfeshan Araghi, H., Nikbin, I.M., Rahimi Reskati, S., Rahmani, E., Allahyari, H.: An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Constr. Build. Mater. 77(2015), 461–471 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.037
- 9.
Dang, T.A., Kamali-Bernard, S., Prince, W.A.: Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 41, 602–611 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.088
- 10.
Wei, Y.-L., Yang, J.-C., Lin, Y.-Y., Chuang, S.-Y., Wang, H.P.: Recycling of harbor sediment as lightweight aggregate. Mar. Pollut. Bull. 57, 867–872 (2008). https://doi.org/10.1016/j.marpolbul.2008.03.033
- 11.
Kyrikou, I., Briassoulis, D.: Biodegradation of agricultural plastic films: a critical review. J. Polym. Environ. 15, 125–150 (2007). https://doi.org/10.1007/s10924-007-0053-8
- 12.
Plastics Europe: Plastics—the Facts 2017: an analysis of european plastics production, demand and waste data (Online). https://www.plasticseurope.org/application/files/1715/2111/1527/Plastics_the_facts_2017_FINAL_for_website.pdf (2017)
- 13.
Alqahtani, F.K., Khan, M.I., Ghataora, G., Dirar, S.: Production of recycled plastic aggregates and its utilization in concrete. J. Mater. Civ. Eng. 29, 04016248 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001765
- 14.
Alqahtani, F.K., Ghataora, G., Khan, M.I., Dirar, S.: Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. 148, 386–397 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.011
- 15.
Liu, P., Farzana, R., Rajarao, R., Sahajwalla, V.: Lightweight expanded aggregates from the mixture of waste automotive plastics and clay. Constr. Build. Mater. 145, 283–291 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.009
- 16.
Záleská, M., Pavlíková, M., Pokorný, J., Jankovský, O., Pavlík, Z., Černý, R.: Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 180, 1–11 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.250
- 17.
Andrade, L.B., Rocha, J.C., Cheriaf, M.: Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Manag. 27, 1190–1199 (2007). https://doi.org/10.1016/j.wasman.2006.07.020
- 18.
Badache, A., Benosman, A.S., Senhadji, Y., Mouli, M.: Thermo-physical and mechanical characteristics of sand-based lightweight composite mortars with recycled high-density polyethylene (HDPE). Constr. Build. Mater. 163, 40–52 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.069
- 19.
Choi, Y.-W., Moon, D.-J., Chung, J.-S., Cho, S.-K.: Effects of waste PET bottles aggregate on the properties of concrete. Cem. Concr. Res. 35, 776–781 (2005). https://doi.org/10.1016/j.cemconres.2004.05.014
- 20.
Hadipramana, J., Mokhatar, S.N., Samad, A.A.A., Hakim, N.F.A.: An exploratory compressive strength of concrete containing modified artificial polyethylene aggregate (MAPEA). IOP Conf. Ser.: Mater. Sci. Eng. 160, 012065 (2016). https://doi.org/10.1088/1757-899X/160/1/012065
- 21.
Silva, R.V., de Brito, J., Saikia, N.: Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates. Cem. Concr. Compos. 35, 23–31 (2013). https://doi.org/10.1016/j.cemconcomp.2012.08.017
- 22.
Saikia, N., De Brito, J.: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review. Constr. Build. Mater. 34, 385–401 (2012)
- 23.
Bernardeau, F., Perrin, D., Caro, A.S.: Valorization of waste thermoset material as a filler in thermoplastic: mechanical properties of phenolic molding compound waste-filled PP composites. J. Appl. Polym. Sci. 135, 45849 (2018)
- 24.
Yang, Y., Boom, R., Irion, B., van Heerden, D.-J., Kuiper, P., de Wit, H.: Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012). https://doi.org/10.1016/j.cep.2011.09.007
- 25.
Dhawan, R., Mohan Singh Bisht, B., Kumar, R., Kumari, S., Dhawana, S.K.: Recycling of plastic waste into tiles with reduced flammability and improved tensile strength. Process Saf. Environ. Prot. 124(2019), 299–307 (2019). https://doi.org/10.1016/j.psep.2019.02.018
- 26.
Tagaya, H., Suzuki, Y., Asou, T., Kadokawa, J., Chiba, K.: Reaction of model compounds of phenol resin and molding materials of phenol resin in supercritical water for chemical recycling of polymer waste. Chem. Lett. 27, 937–938 (1998). https://doi.org/10.1246/cl.1998.937
- 27.
Suzuki, Y., Tagaya, H., Asou, T., Kadokawa, J., Chiba, K.: Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere. Ind. Eng. Chem. Res. 38, 1391–1395 (1999). https://doi.org/10.1021/ie9805842
- 28.
Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B: Biol. Sci. 364, 2115–2126 (2009). https://doi.org/10.1098/rstb.2008.0311
- 29.
Association Française de Normalisation (AFNOR): Plastics—polypropylene (PP) moulding and extrusion materials—Part 2: Preparation of test specimens and determination of properties. AFNOR; Standard No. ISO 19069-2, Brussels (2016)
- 30.
Association Française de Normalisation (AFNOR): Plastics—polyethylene (PE) moulding and extrusion materials—Part 2: preparation of test specimens and determination of properties. AFNOR; Standard No. ISO 17855 -2, Brussels (2016)
- 31.
Association Française de Normalisation (AFNOR): Plastics—impact-resistant polystyrene (PS-I) moulding and extrusion materials—Part 2: preparation of test specimens and determination of properties. AFNOR; Standard No. NF EN ISO 2897-2, Brussels
- 32.
Association Française de Normalisation (AFNOR): Fine ceramics (advanced ceramics,advanced technical ceramics) determination of specific surface area of ceramic powders by gas adsorption using the BET method. AFNOR; Standard No NF EN ISO 18757, Brussels
- 33.
Association Française de Normalisation (AFNOR): Soils: recognition and testing—determination of the organic content by weight of a material—calcination method. AFNOR; Standard No XP P94-047, Brussels
- 34.
Association Française de Normalisation (AFNOR): Soils: investigation and testing—measuring of the methylene blue adsorption capacity of a rocky soil—determination of the methylene blue of a soil by means of the stain test. AFNOR; Standard No NF P 94-068, Brussels
- 35.
Association Française de Normalisation (AFNOR) : Tests for mechanical and physical properties of aggregates part 7: determination of the particle density of filler—pyknometer method. AFNOR; Standard No NF EN 1097-7, Brussels
- 36.
Association Française de Normalisation (AFNOR): Leaching—compliance test for leaching of granular waste materials and sludges—part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). AFNOR; Standard No NF EN 12457-2, Brussels
- 37.
Lecomte, A., Mechling, J.-M., Diliberto, C.: Compaction index of cement paste of normal consistency. Constr. Build. Mater. 23, 3279–3286 (2009). https://doi.org/10.1016/j.conbuildmat.2009.05.005
- 38.
Association Française de Normalisation (AFNOR): Methods of testing cement—Part 3 : determination of setting times and soundness. AFNOR; Standard No NF EN 196-3, Brussels
- 39.
Association Française de Normalisation (AFNOR): Tests for mechanical and physical properties of aggregates—Part 3 : determination of loose bulk density and voids. AFNOR; Standard No NF EN 1097-3, Brussels
- 40.
Association Française de Normalisation (AFNOR): Tests for mechanical and physical properties of aggregates—Part 6: determination of particle density and water absorption. AFNOR; Standard No NF EN 1097-6, Brussels
- 41.
Association Française de Normalisation (AFNOR): Lightweight aggregates—Part 1: lightweight aggregates for concrete and mortar. AFNOR; Standard No NF EN 1097-11, Brussels
- 42.
Association Française de Normalisation (AFNOR): Tests for mechanical and physical properties of aggregates—Part 1: determination of the resistance to wear (micro-Deval). AFNOR; Standard No NF EN 13055-1, Brussels
- 43.
Association Française de Normalisation (AFNOR): Tests for geometrical properties of aggregates Part 1: determination of particle size distribution—sieving method. AFNOR; Standard No NF EN 933-1, Brussels
- 44.
De Larrard, F.: Concrete mixture proportioning: a scientific approach. E & FN Spon, London (1999)
- 45.
Sedran, T., de Larrard, F., RENÉ-LCPC: un logiciel pour optimiser la granularité des matériaux de génie civil. Un logiciel pour optimiser la granularité des matériaux de génie civil”, Note technique, Bulletin de Liaison des Laboratoires des Ponts et Chaussées, N°194, NovembreDécembre (1994)
- 46.
Yang, S., Yue, X., Liu, X., Tong, Y.: Properties of self-compacting lightweight concrete containing recycled plastic particles. Constr. Build. Mater. 84, 444–453 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.038
- 47.
Iucolano, F., Liguori, B., Caputo, D., Colangelo, F., Cioffi, R.: Recycled plastic aggregate in mortars composition: effect on physical and mechanical properties. Mater. Des. (1980-2015) 52(2013), 916–922 (2013). https://doi.org/10.1016/j.matdes.2013.06.025
- 48.
Ismail, Z.Z., AL-Hashmi, E.A.: Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 28(2008), 2041–2047 (2008). https://doi.org/10.1016/j.wasman.2007.08.023
- 49.
Tittareli, F., Shah, S.P.: Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1. Constr. Build. Mater. 47, 1532–1538 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.043
- 50.
Hannawi, K., Kamali-Bernard, S., Prince, W.: Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Manag. 30, 2312–2320 (2010). https://doi.org/10.1016/j.wasman.2010.03.028
- 51.
Jansen, D., Kiggins, M., Swan, C., Malloy, R., Kashi, M., Chan, R., Javdekar, C., Siegal, C., Weingram, J.: Lightweight fly ash-plastic aggregates in concrete. Transp. Res. Rec.: J. Transp. Res. Board 1775, 44–52 (2001). https://doi.org/10.3141/1775-07
- 52.
Záleská, M., Pavlíková, M., Pavlík, Z.: Properties of lightweight cement-based composites containing waste polypropylene, p. 040030. Terchova, Slovakia (2016). https://doi.org/10.1063/1.4955261
- 53.
Batayneh, M., Marie, I., Asi, I.: Use of selected waste materials in concrete mixes. Waste Manag. 27, 1870–1876 (2007). https://doi.org/10.1016/j.wasman.2006.07.026
- 54.
Liu, F., Yan, Y., Li, L., Lan, C., Chen, G.: Performance of recycled plastic-based concrete. J. Mater. Civ. Eng. 27, A4014004 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0000989
- 55.
Shayan, A., Xu, A.: Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs. Cem. Concr. Res. 36, 457–468 (2006). https://doi.org/10.1016/j.cemconres.2005.12.012
- 56.
Neville, A.M., Brooks, J.J.: Concrete Technology, p. 460. Pearson, Harlow (2010)
Funding
The authors thank, European Regional Development Fund (ERDF) and the Haut-de-France Region for their financial support to the project.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ennahal, I., Maherzi, W., Benzerzour, M. et al. Performance of Lightweight Aggregates Comprised of Sediments and Thermoplastic Waste. Waste Biomass Valor 12, 515–530 (2021). https://doi.org/10.1007/s12649-020-00970-1
Received:
Accepted:
Published:
Issue Date:
Keywords
- Waste management
- Lightweight aggregates
- Sediment
- Thermoplastic
- Packing density model