Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields


New substrates and fermentation conditions have been drawing researchers’ attention to increase the bioethanol productivity. The aim of this study was to evaluate the acid hydrolysis of Spirulina biomass and its use in association with molasses in ethanol production with and without magnetic field (MF) application. Hydrothermal hydrolysis of Spirulina biomass hydrolysis was evaluated. The highest reducing sugar concentration (79% w w−1) was obtained with sulfuric acid 5% (v v−1), 121 °C, 30 min, and 500 g L−1 of biomass. This hydrolyzed biomass and molasses were used as substrates in the alcoholic fermentation with Saccharomyces cerevisiae by varying the biomass/molasses (B/M) ratio: 25, 50, and 75% (v v−1). The medium 25% B/M had higher ethanol yield at 78.9% and productivity of 0.72 g L−1 h−1. MF application did not increase the cell growth and ethanol production. This is the first study that integrates molasses and microalgal biomass substrates for ethanol production and presents some new information about magnetic fields application that is still little explored in the literature.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Oey, M., Sawyer, A.L., Ross, I.L., Hankamer, B.: Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol. J. 14, 1487–1499 (2016). https://doi.org/10.1111/pbi.12516

    Article  Google Scholar 

  2. 2.

    Jiang, X., Guan, D.: Determinants of global CO2 emissions growth. Appl. Energy. 184, 1132–1141 (2016). https://doi.org/10.1016/j.apenergy.2016.06.142

    Article  Google Scholar 

  3. 3.

    Tollefson, J.: Global industrial carbon emissions to reach all-time high in 2018. Nature (2018). https://doi.org/10.1038/d41586-018-07666-6

    Article  Google Scholar 

  4. 4.

    Hossain, M.N.B., Basu, J.K., Mamun, M.: The production of ethanol from micro-algae Spirulina. Procedia Eng 105, 733–738 (2015). https://doi.org/10.1016/j.proeng.2015.05.064

    Article  Google Scholar 

  5. 5.

    Guo, M., Song, W., Buhain, J.: Bioenergy and biofuels: history, status, and perspective. Renew. Sustain. Energy Rev. 42, 712–725 (2015). https://doi.org/10.1016/j.rser.2014.10.013

    Article  Google Scholar 

  6. 6.

    Şerbetçioğlu Sert, B., İnan, B., Özçimen, D.: Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chim. Slov. 65, 160–165 (2018). https://doi.org/10.17344/acsi.2017.3728

    Article  Google Scholar 

  7. 7.

    Muruaga, M.L., Carvalho, K.G., Domínguez, J.M., de Souza Oliveira, R.P., Perotti, N.: Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: studies of scale up in bioreactor. Renew. Energy. 85, 649–656 (2016). https://doi.org/10.1016/j.renene.2015.07.008

    Article  Google Scholar 

  8. 8.

    He, J., Wu, A.M., Chen, D., Yu, B., Mao, X., Zheng, P., Yu, J., Tian, G.: Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium. Biotechnol. Biofuels. 7, 1–9 (2014). https://doi.org/10.1186/1754-6834-7-43

    Article  Google Scholar 

  9. 9.

    Markou, G., Angelidaki, I., Nerantzis, E., Georgakakis, D.: Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies. 6, 3937–3950 (2013). https://doi.org/10.3390/en6083937

    Article  Google Scholar 

  10. 10.

    Sivaramakrishnan, R., Incharoensakdi, A.: Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 217, 458–466 (2018). https://doi.org/10.1016/j.fuel.2017.12.119

    Article  Google Scholar 

  11. 11.

    Farias Silva, C.E., Bertucco, A.: Dilute acid hydrolysis of microalgal biomass for bioethanol production: an accurate kinetic model of biomass solubilization, sugars hydrolysis and nitrogen/ash balance. React. Kinet. Mech. Catal. 122, 1115 (2017). https://doi.org/10.1007/s11144-017-1271-2

    Article  Google Scholar 

  12. 12.

    Hamouda, R.A., Sherif, S.A., Ghareeb, M.M.: Bioethanol production by various hydrolysis and fermentation processes with micro and macro green algae. Waste Biomass Valoriz. 9, 1495–1501 (2018). https://doi.org/10.1007/s12649-017-9936-7

    Article  Google Scholar 

  13. 13.

    John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A.: Bioresource technology micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186–193 (2011). https://doi.org/10.1016/j.biortech.2010.06.139

    Article  Google Scholar 

  14. 14.

    Chia, S.R., Chew, K.W., Show, P.L., Xia, A., Ho, S.H., Lim, J.W.: Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresour. Technol. 289, 121727 (2019). https://doi.org/10.1016/j.biortech.2019.121727

    Article  Google Scholar 

  15. 15.

    Costa, J.A.V., Freitas, B.C.B., Rosa, G.M., Moraes, L., Morais, M.G., Mitchell, B.G.: Operational and economic aspects of Spirulina-based biorefinery. Bioresour. Technol. 292, 121946 (2019). https://doi.org/10.1016/j.biortech.2019.121946

    Article  Google Scholar 

  16. 16.

    Salla, A.C.V., Margarites, A.C., Seibel, F.I., Holz, L.C., Brião, V.B., Bertolin, T.E., Colla, L.M., Costa, J.A.V.: Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour. Technol. 209, 133–141 (2016). https://doi.org/10.1016/j.biortech.2016.02.069

    Article  Google Scholar 

  17. 17.

    Rosa, G.M., Moraes, L., Cardias, B.B., Souza, M., Costa, J.A.V.: Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour. Technol. 192, 321–327 (2015). https://doi.org/10.1016/j.biortech.2015.05.020

    Article  Google Scholar 

  18. 18.

    Cardias, B.B., de Morais, M.G., Costa, J.A.V.: CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition. Bioresour. Technol. 267, 77–83 (2018). https://doi.org/10.1016/j.biortech.2018.07.031

    Article  Google Scholar 

  19. 19.

    Miranda, J.R., Passarinho, P.C., Gouveia, L.: Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol. 104, 342–348 (2012). https://doi.org/10.1016/j.biortech.2011.10.059

    Article  Google Scholar 

  20. 20.

    Albuquerque, W.W.C., Costa, R.M.P.B., de Salazar e Fernandes, T., Porto, A.L.F.: Evidences of the static magnetic field influence on cellular systems. Prog. Biophys. Mol. Biol. 121, 16–28 (2016). https://doi.org/10.1016/j.pbiomolbio.2016.03.003

    Article  Google Scholar 

  21. 21.

    Cakmak, T., Dumlupinar, R., Erdal, S.: Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 31, 120–129 (2010). https://doi.org/10.1002/bem.20537

    Article  Google Scholar 

  22. 22.

    Deamici, K.M., Cardias, B.B., Costa, J.A.V., Santos, L.O.: Static magnetic fields in culture of Chlorella fusca: bioeffects on growth and biomass composition. Process Biochem. 51, 912–916 (2016). https://doi.org/10.1016/j.procbio.2016.04.005

    Article  Google Scholar 

  23. 23.

    Wan, Y., Zhang, J., Han, H., Li, L., Liu, Y., Gao, M.: Citrinin-producing capacity of Monascus purpureus in response to low—frequency magnetic fields. Process Biochem. 53, 25–29 (2017). https://doi.org/10.1016/j.procbio.2016.11.009

    Article  Google Scholar 

  24. 24.

    Santos, L.O., Alegre, R.M., Garcia-Diego, C., Cuellar, J.: Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 45, 1362–1367 (2010). https://doi.org/10.1016/j.procbio.2010.05.008

    Article  Google Scholar 

  25. 25.

    Berlot, M., Rehar, T., Fefer, D., Berovic, M.: The influence of treatment of Saccharomyces cerevisiae inoculum with a magnetic field on subsequent grape must fermentation. Chem. Biochem. Eng. Q. 27, 423–429 (2013)

    Google Scholar 

  26. 26.

    Deutmeyer, A., Raman, R., Murphy, P., Pandey, S.: Effect of magnetic field on the fermentation kinetics of Saccharomyces cerevisiae. Adv. Biosci. Biotechnol. 02, 207–213 (2011). https://doi.org/10.4236/abb.2011.24031

    Article  Google Scholar 

  27. 27.

    Lopes, P., Borzani, W., Rordrigues, J.A., Ratusznei, S.M.: Influência de campo magnético na fermentação alcoólica descontínua. Brazilian J. Food Technol. 13, 38–51 (2010). https://doi.org/10.4260/BJFT2010130100006

    Article  Google Scholar 

  28. 28.

    Motta, M.A., Muniz, J.B.F., Schuler, A., da Motta, M.: Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol. Prog. 20, 393–396 (2004). https://doi.org/10.1021/bp034263j

    Article  Google Scholar 

  29. 29.

    Pothakamury, U.R., Barbosa, G., Swanson, B.: Magnetic-field inactivation of microorganisms and generation of biological changes. Food Technol. 47, 85–93 (1993)

    Google Scholar 

  30. 30.

    Moncada, J., Tamayo, J.A., Cardona, C.A.: Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126–140 (2014). https://doi.org/10.1016/j.ces.2014.07.035

    Article  Google Scholar 

  31. 31.

    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.: Protein determination with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/0304-3894(92)87011-4

    Article  Google Scholar 

  32. 32.

    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  33. 33.

    Folch, J., Lees, M., Stanley, H.S.: A simple method for the isolation and purification of total lipides from animal tissue. J. Biol. Chem. 226, 497–509 (1957). https://doi.org/10.1016/j.ultrasmedbio.2011.03.005

    Article  Google Scholar 

  34. 34.

    AOAC: Official Methods of Analysis, Association of Analytical Chemists, 15th edn. Washington DC: AOAC, pp. 141–144 (2000). DOI: 10.1007/978-3-642-31241-0.

  35. 35.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  36. 36.

    Margarites, A.C.F.: Carbohydrate synthesis by microalgae and production of bioethanol (2014). https://repositorio.furg.br/handle/1/6291

  37. 37.

    Sumbhate, S., Nayak, S., Goupale, D., Tiwari, A., Jadon, R.S.: Colorimetric method for the estimation of ethanol in alcoholic-drinks. J. Anal. Tech. 1, 1–6 (2012)

    Google Scholar 

  38. 38.

    Veana, F., Martínez-Hernández, J.L., Aguilar, C.N., Rodríguez-Herrera, R., Michelena, G.: Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian J. Microbiol. 45, 373–377 (2014). https://doi.org/10.1590/S1517-83822014000200002

    Article  Google Scholar 

  39. 39.

    Arshad, M., Hussain, T., Iqbal, M., Abbas, M.: Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Braz. J. Microbiol. 48, 403–409 (2017). https://doi.org/10.1016/j.bjm.2017.02.003.

    Article  Google Scholar 

  40. 40.

    Shokrkar, H., Ebrahimi, S., Zamani, M.: Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200, 380–386 (2017). https://doi.org/10.1016/j.fuel.2017.03.090

    Article  Google Scholar 

  41. 41.

    Harun, R., Danquah, M.K.: Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 46, 304–309 (2011). https://doi.org/10.1016/j.procbio.2010.08.027

    Article  Google Scholar 

  42. 42.

    Silva, B.V., Silveira Mastrantonio, D.J., Costa, J.A.V., de Morais, M.G.: Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Bioresour. Technol. 269, 221–226 (2018). https://doi.org/10.1016/j.biortech.2018.08.105

    Article  Google Scholar 

  43. 43.

    Cazetta, M.L., Celligoi, M.A.P.C., Buzato, J.B., Scarmino, I.S.: Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour. Technol. 98, 2824–2828 (2007). https://doi.org/10.1016/j.biortech.2006.08.026

    Article  Google Scholar 

  44. 44.

    Nurhayati, J., Mayzuhroh, A., Arindhani, S., Caroenchai, C.: Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media. Agric. Agric. Sci. Procedia. 9, 493–499 (2016). https://doi.org/10.1016/j.aaspro.2016.02.168

    Article  Google Scholar 

  45. 45.

    Motta, M.A., Montenegro, E.J.N., Stamford, T.L.M., Silva, A.R., Silva, F.R.: Changes in Saccharomyces cerevisiae development induced by magnetic fields. Biotechnol. Prog. 17, 970–973 (2001). https://doi.org/10.1021/bp010076e

    Article  Google Scholar 

  46. 46.

    Erasmus, D.J., Cliff, M., Van Vuuren, H.J.J.: Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine. Am. J. Enol. Vitic. 55, 371–378 (2004)

    Google Scholar 

  47. 47.

    Hristov, J., Perez, V.: Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng. 3(1), 1–18 (2011)

    Google Scholar 

Download references


The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) (Grant No. Finance Code 001), the National Council for Scientific and Technological Development (CNPq), the Ministry of Science, Technology, Innovations, and Communication (MCTIC), and the Student Development Program (PDE/FURG) for the financial support provided, as well as the Fundação André Tosello for providing the yeast strain.

Author information



Corresponding author

Correspondence to Lucielen Oliveira Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardias, B.B., Trevisol, T.C., Bertuol, G.G. et al. Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields. Waste Biomass Valor 12, 175–183 (2021). https://doi.org/10.1007/s12649-020-00966-x

Download citation


  • Bioethanol
  • Biomass valorization
  • Microalgae
  • Saccharomyces cerevisiae
  • Sugarcane