Bioremediation of Oxamyl Compounds by Algae: Description and Traits of Root-Knot Nematode Control


Safety of environment and human health has newly become crucial factors when selecting crops production programs. With regard to nematicides, oxamyl is a systematic nematicide widely used for the control of soil nematodes. Accelerated biodegradation of the oxamyl, utilized at the recommended dose in soil cultured by banana plants and coupled with root-knot nematode (RKN, Meloidogyne incognita), was observed using algal bioassay studies. However, algae play an important role in maintaining micro and macro elements availability, plant biochemical process, nitrogen fixation, photosynthesis and rebate the harmful effect of pesticides through degradation. For this reason, algae such as: Chlorella vulgaris, Scenedesmus obliquus, Anabaena oryza and Nostoc muscorum have been used to determine the degradability enhancement of oxamyl by an accelerated biodegradation process. All oxamyl-degrading species showed a highly effective to enhance biodegradation of oxamyl compound. Memorable, the alga S. obliquus was the most successful one for oxamyl degradation that denoted by the least residue in plant was 25% and oxamyl degradation in untreated soil by algae was 100% and had an active promoting effect on plant health. Unlike, the incorporated application of alga, C. vulgaris was the most successful action in diminishing the nematode, juveniles2 count in soil (57.55%) and galls count on roots (52.87%).

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Root-knot nematode


Root-lesion nematodes


Plant-parasitic nematodes




High performance liquid chromatography


Arabino galactan proteins


Sodium hypochlorite


Genetic Engineering and Biotechnology Research Institute


Analysis of variance


Retention time


Not found


  1. 1.

    Khalil, M.S., Darwesh, D.M.: Some integrated practices to manage root-knot nematodes on tomatoes: a mini review, innovative techniques in agriculture. Innov. Tech. Agric. 3, 618–625 (2018)

    Google Scholar 

  2. 2.

    Jones, M.G.K., Fosu-Nyarko, J.: Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann. Appl. Biol. 164, 163–181 (2014)

    Google Scholar 

  3. 3.

    Jones, J.T., Haegeman, A., Danchin, E.G.J.: Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant. Pathol. 14, 946–961 (2013)

    Google Scholar 

  4. 4.

    Singh, B.K., Walker, A., Wright, D.J.: Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: dependence on structural similarity of compounds. Soil. Biol. Biochem. 37, 1675–1682 (2005)

    Google Scholar 

  5. 5.

    Abd-Elgawad, M.M.M., Askary, T.H.: Impact of Phytonematodes on Agriculture Economy. CAB International Biocontrol Agents of Phytonematodes, Wallingford (2015)

    Google Scholar 

  6. 6.

    Georgis, R., Koppenhöfer, A.M., Lacey, L.A., Belair, G., Duncan, L.W., Grewal, P.S., Samish, M., Tan, L., Torrvan, P., Tol, W.H.M.: Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006)

    Google Scholar 

  7. 7.

    Lozowicka, B., Kaczynski, P., Paritova, A.E., Kuzembekova, G.B., Abzhalieva, A.B., Sarsembayeva, N.B., Alihan, K.: Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food Chem. Toxicol. 64, 238–248 (2014)

    Google Scholar 

  8. 8.

    Robacer, M., Canali, S., Kristensen, H.L., Bavec, F., Mlakar, S.G., Jakop, M., Bavec, M.: Cover crops in organic field vegetable production. Sci. Hortic. 208, 104–110 (2016)

    Google Scholar 

  9. 9.

    De Gerónimo, E., Aparicio, V.C., Bárbaro, S., Portocarrero, R., Jaime, S., Costa, J.L.: Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107, 423–431 (2014)

    Google Scholar 

  10. 10.

    Wee, S.Y., Airs, A.Z.: Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere 188, 575–581 (2017)

    Google Scholar 

  11. 11.

    Radivojević, L.J., Gasić, S., Santrić, L.J., Stanković-Kalezić, R.: The impact of atrazine on several biochemical properties of chernozem Soil. J. Serb. Chem. Soc. 73, 951–959 (2008)

    Google Scholar 

  12. 12.

    Tomlin, C.D.S.: The e-Pesticide Manual, Version 2.2. The British Crop Protection Council, Surrey UK (2002).

    Google Scholar 

  13. 13.

    Tomlin, C.D.S.: Insecticidal reduction of potato leaf roll virus transmission by Muzuspersicae. Ann. Appl. Biol. 146, 81–88 (2005)

    Google Scholar 

  14. 14.

    Khan, Z., Park, S.D., Shin, S.Y., Bae, S.G., Yeon, I.K., Seo, Y.J.: Management of Meloidogyne incognita on tomato by root-dip treatment in culture filtrate of the blue-green alga. Microcoleus Vaginatus Bioresour. Technol. 96, 1338–1341 (2005)

    Google Scholar 

  15. 15.

    Hamouda, R.A., El-Ansary, M.S.M.: Potential of plant-parasitic nematode control in banana plants by microalgae as a new approaches towards resistance. Egypt. J. Biol. Best Control. 271, 65–172 (2017)

    Google Scholar 

  16. 16.

    Flores, E., Herrero, A.: Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33, 164–167 (2005)

    Google Scholar 

  17. 17.

    Kulasooriya, S.A., Magana-Arachchi, D.N.: Nitrogen fixing cyanobacteria: their diversity, ecology and utilization with special reference to rice cultivation. J. Natl. Sci. Found. 44, 111–128 (2016)

    Google Scholar 

  18. 18.

    Gao, Q.T., Wong, T.S., Tam, N.F.Y.: Removal and biodegradation of nonyl phenol by different Chlorella species. Mar. Pollut. Bull. 63, 445–451 (2011)

    Google Scholar 

  19. 19.

    Ata, A., Nalcaci, O.O., Ovez, B.: Macro algae Gracilaria verrucosa as a biosorbent: a study of sorption mechanisms. Algal. Res. 1, 194–204 (2012)

    Google Scholar 

  20. 20.

    Marinescu, M., Dumitru, M., Lacatusu, A.: Biodegradation of petroleum hydrocarbons in an artificial polluted soil. Res. J. Agric. Sci. 41, 157–162 (2009)

    Google Scholar 

  21. 21.

    Wang, X.C., Zhao, H.M.: Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. Journal of coastal research, SI 50 In: Proceedings of the 9th International Coastal Symposium. pp. 1056–1061 (2007)

  22. 22.

    Hamouda, R.A., Sorour, N.M., Yeheia, D.S.: Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int. Biodeterior. Biodegrad. 11, 2128–2134 (2016)

    Google Scholar 

  23. 23.

    Priyadarshani, I., Sahu, D., Rath, B.: Microalgal bioremediation: Current practices and perspectives. J. Biochem. Technol. 3, 299–304 (2011)

    Google Scholar 

  24. 24.

    Chekroun, K.B., Sánchez, E., Baghour, M.: The role of algae in bioremediation of organic pollutants. Int. Res. J. Public. Environ. Health. 1, 19–32 (2014)

    Google Scholar 

  25. 25.

    Maheshwari, R., Singh, U., Singh, P., Singh, N., Jat, B.L., Rani, B.: To decontaminate wastewater employing bioremediation technologies. J. Adv. Sci. Res. 5, 7–15 (2014)

    Google Scholar 

  26. 26.

    Bwapwa, J.K., Jaiyeola, A.T., Chetty, R.: Bioremediation of acid mine drainage using algae strains: a review. S. Afr. J. Chem. Eng. 24, 62–70 (2017)

    Google Scholar 

  27. 27.

    Ibrahim, W.M., Karam, M.A., El-Shahat, R.M., Adway, A.A.: Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. J. Biomed Biotechnol. 14, 1–6 (2015)

    Google Scholar 

  28. 28.

    Cáceres, P.T., Megharaj, M., Naidu, R.: Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr. Microbiol. 57, 643–646 (2008)

    Google Scholar 

  29. 29.

    Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R.: Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 5, 159–172 (2013)

    Google Scholar 

  30. 30.

    Arnold, A.A., Genard, B., Zito, F., Tremblay, R., Warschawski, D.E., Marcotte, I.: Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim. Biophys. Acta 1848, 369–377 (2015)

    Google Scholar 

  31. 31.

    Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., Willats, W.G.T.: The cell walls of green algae: a journey through evolution and diversity. Front. Plant Sci. 82, 1–7 (2012)

    Google Scholar 

  32. 32.

    Alexander, M.: Biodegradation and Bioremedation, 2nd edn. Academic Press, England (1999)

    Google Scholar 

  33. 33.

    Lu, T., Zhu, Y., Xu, J., Ke, M., Zhang, M., Tan, C., Fu, Z., Qian, H.: Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa. Environ Pollut 234, 379–388 (2018)

    Google Scholar 

  34. 34.

    Kumar, N., Mukherjee, I., Sarkar, B., Paul, R.K.: Degradation of tricyclazole: effect of moisture, soil type, elevated carbon dioxide and blue green algae (BGA). J. Hazard Mater. 321, 517–527 (2017)

    Google Scholar 

  35. 35.

    Dong, X., Sun, H.: Effect of temperature and moisture on degradation of herbicide atrazine in agricultural soil. Int. J. Environ. Agric Res. 2, 150–157 (2016)

    Google Scholar 

  36. 36.

    Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales) characterization of the synchronous culture of Scenedesmus obliquus. Bacteriol. Rev. 35, 171–205 (1971)

    Google Scholar 

  37. 37.

    American Public Health Association [APHA]: Standard Methods for the Examination of Water and Wastewater 22nd ed. APHA, Inc. Washington, D.C. (2005).

    Google Scholar 

  38. 38.

    Hussey, R.S., Barker, R.K.: A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant diseases report 57, 1025–1028 (1973).

    Google Scholar 

  39. 39.

    McGarvey, B.D.: High-performance liquid chromatographic methods for the determination of N-methylcarbamate pesticides in water, soil, plants and air. J. Chromatogr. 642, 89–105 (1993)

    Google Scholar 

  40. 40.

    Krause, R.T.: Resolution, sensitivity and selectivity of a high-performance liquid chromatographic post-column fluorometric labeling technique for determination of carbamate insecticides. J. Chromatogr. 185, 615–626 (1979)

    Google Scholar 

  41. 41.

    Keith, L., Crummett, W., Deegam, J., Libby, R., Taylor, J., Wentler, G.: Principles of environmental analysis. Anal Chem 55, 2210–2218 (1983)

    Google Scholar 

  42. 42.

    Sokal, R.R., Rohlf, F.J.: Biometry: the principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and company New York. 937 pp (1995).

    Google Scholar 

  43. 43.

    Wang, Y., Wu, S., Chen, J., Zhang, C., Xu, Z., Li, G., Cai, L., Shen, W., Wang, Q.: Single and joint toxicity assessment of four currently used pesticides to zebrafish (Daniorerio) using traditional and molecular endpoints. Chemosphere 192, 14–23 (2018)

    Google Scholar 

  44. 44.

    Megharaj, M., Madhavi, D.R., Sreenivasulu, C., Umamaheswari, A., Venkateswarlu, K.: Persistence and effects of fenamiphos on native algal populations and enzymatic activities in soil. Soil. Biol. Biochem. 31, 1549–1553 (1999)

    Google Scholar 

  45. 45.

    Smelt, J.H., Dekker, A., Leistra, M., Houx, N.W.H.: Conversion of four carbamoyloximes in soil samples from above and below the soil water table. Pestic. Sci. 14, 173–181 (1983)

    Google Scholar 

  46. 46.

    Casserly, D.M., Davis, E.M., Downs, T.D., Guthrie, R.K.: Sorption of organics by Selenastrum capricornutum. Water Res. 17, I591–I594 (1983)

    Google Scholar 

  47. 47.

    Ou, L.T., Rao. P. S. C.: Degradation and metabolism of oxamyl and phenamiphos in soil. J. Environ. Sci. Health Part B. 21, 25–40 (1986).

    Google Scholar 

  48. 48.

    Gadd, G.M.: Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem. Technol. Biotechnol. 84, 13–28 (2009)

    Google Scholar 

  49. 49.

    El-Sheekh, M.M., Hamouda, R.A., Nizam, A.A.: Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int. Biodeterior. Biodegrad. 82, 67–72 (2013)

    Google Scholar 

  50. 50.

    El-Sheekh, M.M., Hamouda, R.A.: Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalin. Water Treat. 52, 1448–1454 (2014)

    Google Scholar 

  51. 51.

    Holajjer, P., Kamra, A., Gaur, H.S., Manjunath, M.: Potential of cyanobacteria for biorational management of plant parasitic nematodes: a review. Crop. protection. 53, 147–151 (2013)

    Google Scholar 

  52. 52.

    El-Ansary, M.S.M., Hamouda, R.A.: Biocontrol of root knot nematode infected banana plants by some marine algae. Russ. J. Mar. Biol. 401, 40–146 (2014)

    Google Scholar 

  53. 53.

    Thirumaran, G., Arumugam, M., Arumugam, R., Anantharaman, P.: Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschu sesculentus medikus. Am.-Eurasian J. Agro. 2, 57–66 (2009)

    Google Scholar 

  54. 54.

    Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R.: Consortia of cyanobacteria/microalgae and bacteria. Biotechnol. Potent. Biotechnol. Adv. 29, 896–907 (2011)

    Google Scholar 

  55. 55.

    Osman, A.K., Al-Rehiayani, S.M., Al-Deghairi, M.A., Ahmed, K., Salama, A.K.: Bioremediation of oxamyl in sandy soil using animal manures. Int. Biodeterior. Biodegrad. 63, 341–346 (2009)

    Google Scholar 

  56. 56.

    Rousidou, K., Chanika, E., Georgiadou, D., Soueref, E., Katsarou, D., Kolovos, P., Ntougias, S., Tourna, M., Tzortzakakis, E.A., Dimitrios, G., Karpouzas, D.G.: Isolation of oxamyl-degrading bacteria and identification of cehA as a novel oxamyl hydrolase gene. Front Microbiol. 7, 1–12 (2016)

    Google Scholar 

  57. 57.

    B Ramakrishnan M Megheraj K Venkateswarlu N Sethunathan R Naidu 2011 Mixtures of environmental pollutants: Effect on microorganisms and their activities in soils reviews of environmental contamination and toxicology Springer New York 63 120

    Google Scholar 

  58. 58.

    Kapoor, M., Rajagopal, R.: Enzymatic bioremediation of organphosphorus insecticides by recombinant organphosphorus hydrolase. Int. Biodeteriorat. 65, 896–901 (2011)

    Google Scholar 

Download references


The authors are gratefully acknowledging Dr. Mohamed F. Afifi (University of Sadat City, Cairo, Egypt) for critical reading of the manuscript.

Author information



Corresponding author

Correspondence to Ragaa Abdel fatah Hamouda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Ansary, M.S.M., Hamouda, R.A.f. & Ahmed-Farid, O.A. Bioremediation of Oxamyl Compounds by Algae: Description and Traits of Root-Knot Nematode Control. Waste Biomass Valor 12, 251–261 (2021).

Download citation


  • Oxamyl
  • Biodegradation
  • RKN
  • Meloidogyne incognita
  • Banana
  • Algae