Effect of Phenolic Acids Derived from Rice Straw on Botrytis cinerea and Infection on Tomato


Phenolic compounds are widely used in different research fields, such as pesticides, medicines, and food. In this study, phenolic acids (PAs) were extracted from rice straw and were found to exhibit a strong inhibitory effect on Botrytis cinerea. B. cinerea mycelial growth and spore generation decreased by 86.18% and 69.10%, respectively, following 0.2 g/L phenolic acid treatment. Confocal microscopic images demonstrated that phenolic acids changed the morphology of B. cinerea. The addition of phenolic acids to B. cinerea-infected tomato leaves increased PAL (phenylalaninammo-nialyase) and PPO (polyphenol oxidase) activities, and decreased POD (peroxidases) and CAT (catalase) activities in the leaves, indicating that phenolic acids enhanced the tolerance of tomato leaves to B. cinerea by reducing oxidative stress. Chlorophyll fluorescence imaging revealed that phenolic acids could alleviate the destruction of the photosynthetic system of B. cinerea-infected leaves. These results provide new insight into the use of phenolic acids from rice straw, through which a complete green cycle of ecological production can be established.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Yu, W., Zhao, R., Sheng, J., Shen, L.: SlERF2 is associated with methyl jasmonate-mdeiated defense response against Botrytis cinerea in tomato fruit. J. Agric. Food Chem. 66(38), 9923–9932 (2018)

    Article  Google Scholar 

  2. 2.

    Prins, T.W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., Ten Have, A., Hansen, M.E., Van Kan, J.A.L.: Infection strategies of Botrytis cinerea and related necrotrophic pathogens. Fungal Pathology, pp. 33–64. Springer, Netherlands (2000)

    Google Scholar 

  3. 3.

    Fillinger, S., Elad, Y.: A plant hosts of Botrytis spp. Botrytis—the fungus, the pathogen and its management in agricultural systems. pp. 413–486. Springer International Publishing, Cham (2016)

    Google Scholar 

  4. 4.

    Cristescu, S.M., De Martinis, D., te Lintel Hekkert, S., Parker, D.H., Harren, F.J.M.: Ethyleneproduction by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol. 68(11), 5342–5350 (2002)

    Article  Google Scholar 

  5. 5.

    Zhang, Y., Yang, X., Liu, Q., Qiu, D., Zhang, Y., Zeng, H., Yuan, J., Mao, J.: Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol. Res. 165(2), 142–151 (2010)

    Article  Google Scholar 

  6. 6.

    Puangpronpitag, D., Sittiwet, C.: Antimicrobial properties of cinnamomum verum aqueous extracts. Asian J. Biol. Sci. 2(2), 49–53 (2009)

    Article  Google Scholar 

  7. 7.

    Agatemor, C.: Antimicrobial activity of aqueous and ethanol extracts of nine Nigerian spices against four food borne bacteria. Electron. J. Environ. Agric. Food Chem. 10(3), 77–80 (2009)

    Google Scholar 

  8. 8.

    de Rodríguez, D.J., Hernández-Castillo, D., Angulo-Sánchez, J.L., et al.: Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp. Rhizoctonia solani, and Fusarium oxysporum. Ind. Crops Prod. 25(2), 111–116 (2007)

    Article  Google Scholar 

  9. 9.

    Flores-Moctezuma, H., García Licona, R., Sandoval García, G., Zilch Domínguez, S., Bermúdez Torres, K., Bravo-Luna, L., Martínez Martínez, G., Carvajal-Moreno, M., Montes Belmont, R., Cruz Cruz, V.: Antifungal properties in higher plants. Retrospective analyses and investigations. Rev. Mex. de Fitopatología 18, 125–131 (2000)

    Google Scholar 

  10. 10.

    Mendez, M., Rodríguez, R., Ruiz, J., Morales-Adame, D., Castillo, F., Hernández-Castillo, F.D., Aguilar, C.N.: Antibacterial activity of plant extracts obtained with alternative organics solvents against food-borne pathogen bacteria. Ind. Crops Prod. 37(1), 445–450 (2012)

    Article  Google Scholar 

  11. 11.

    Wang, L., Hu, W., Deng, J., Liu, X., Zhou, J., Li, X.: Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Adv. 9, 28987–28995 (2019)

    Article  Google Scholar 

  12. 12.

    Axelsson, L., Franzn, M., Ostwald, M., Berndes, G., Lakshmi, G., Ravindranath, N.H.: Perspective: Jatropha cultivation in Southern India: assessing farmers’ experiences. Biofuels Bioprod. Biorefin. 6(3), 246–256 (2012)

    Article  Google Scholar 

  13. 13.

    Lee, K.M., Kalyani, D., Tiwari, M.K., Kim, T.S., Dhiman, S.S., Lee, J.K., Kim, I.W.: Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123(4), 636–645 (2012)

    Article  Google Scholar 

  14. 14.

    Yilmaz, V.A., Brandolini, A., Hidalgo, A.: Phenolic acids and antioxidant activity of wild, feral and domesticated diploid wheats. J. Cereal Sci. 64, 168–175 (2015)

    Article  Google Scholar 

  15. 15.

    Black, R.L.B., Dix, N.J.: Spore germination and germ hyphal growth of microfungi from litter and soil in the presence of ferulic acid. Trans. Br. Mycol. Soc. 66(2), 305–311 (1976)

    Article  Google Scholar 

  16. 16.

    Ohi, M., Kitamura, T., Hata, S.: Stimulation by caffeic acid, coumalic acid, and corilagin of the germination of resting spores of the clubroot pathogen Plasmodiophora brassicae. J. Agric. Chem. Soc. Jpn. 67(1), 170–173 (2014)

    Google Scholar 

  17. 17.

    Xue, Y., Wang, X., Chen, X., Hu, J., Gao, M.-T., Li, J.: Effects of different cellulases on the release of phenolic acids from rice straw during saccharification. Bioresour. Technol. 234, 208–216 (2017)

    Article  Google Scholar 

  18. 18.

    Zheng, W., Zheng, Q., Xue, Y., Hu, J., Gao, M.-T.: Influence of rice straw polyphenols on cellulase production by Trichoderma reesei. J. Biosci. Bioeng. 123(6), 731–738 (2017)

    Article  Google Scholar 

  19. 19.

    Wang, X., Tsang, Y.F., Li, Y., Ma, X., Cui, S., Zhang, T.-A., Hu, J., Gao, M.-T.: Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis. Bioresour. Technol. 244, 1059–1067 (2017)

    Article  Google Scholar 

  20. 20.

    Chen, X., Xue, Y., Hu, J., Tsang, Y.F., Gao, M.-T.: Release of polyphenols is the major factor influencing the bioconversion of rice straw to lactic acid. Appl. Biochem. Biotechnol. 183(3), 685–698 (2017)

    Article  Google Scholar 

  21. 21.

    Zheng, W., Chen, X., Xue, Y., Hu, J., Gao, M.-T., Tsang, Y.F.: The influence of soluble polysaccharides derived from rice straw upon cellulase production by Trichoderma reesei. Process Biochem. 61, 130–136 (2017)

    Article  Google Scholar 

  22. 22.

    Chen, X., Wang, X., Xue, Y., Zhang, T.-A., Hu, J., Tsang, Y.F., Gao, M.-T.: Tapping the bioactivity potential of residual stream from its pretreatments may be a green strategy for low-cost bioconversion of rice straw. Appl. Biochem. Biotechnol. 186(3), 507–524 (2018)

    Article  Google Scholar 

  23. 23.

    Chen, Q., Li, T., Gui, M., Liu, S., Zheng, M., Ni, J.: Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresour. Technol. 239, 21–27 (2017)

    Article  Google Scholar 

  24. 24.

    Zhang, X., Hao, L., Hong, K., Yi, Y.: Growth, dendrobine content and photosynthetic characteristics of Dendrobium nobile under different solar irradiances. Plant Omics 7(6), 461–467 (2014)

    Google Scholar 

  25. 25.

    Chen, X., Wang, X., Xue, Y., Zhang, T.A., Li, Y., Hu, J., Tsang, Y.F., Zhang, H., Gao, M.T.: Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae. J. Biosci. Bioeng. 125(6), 703–709 (2018)

    Article  Google Scholar 

  26. 26.

    Perrin D.D., Watt, A.E.: Complex formation of zinc and cadmium with glutathione. BBA 230(1), 96–104 (1971)

    Google Scholar 

  27. 27.

    Singhal, G.M, Das, N.B., Sharma, R.P.: ChemInform abstract: reaction of nitroalkenes with iodotrimethylsilane: a new method for the conversion of vinyl nitro steroids to keto steroids. Chem. Inform. 21(14), 1470–1471 (1990)

    Google Scholar 

  28. 28.

    Morales, J., Mendoza, L., Cotoras, M.: Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. J. Appl. Microbiol. 123(4), 969–976 (2017)

    Article  Google Scholar 

  29. 29.

    Geny, L., Darrieumerlou, A., Doneche, B.: Conjugated polyamines and hydroxycinnamic acids in grape berries during Botrytis cinerea disease development differences between ‘noble rot’ and ‘grey mould’. Aust. J. Grape Wine Res. 9(2), 102–106 (2003)

    Article  Google Scholar 

  30. 30.

    Dandan, X., Yizhen, D., Pinggen, X., Qi, W., Zide, J., Lingwang, G.: In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biol. Technol. 139, 106–114 (2018)

    Article  Google Scholar 

  31. 31.

    Polle, A., Otter, T., Seifert, F.: Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies 1). Plant Cell Physiol. 106(1), 53–60 (1994)

    Article  Google Scholar 

  32. 32.

    AbuQamar, S., Moustafa, K., Tran, L.S.: Mechanisms and strategies of plant defense against Botrytis cinerea. Crit. Rev. Biotechnol. 37(2), 262–274 (2017)

    Article  Google Scholar 

  33. 33.

    Zhao, P., Ren, A., Dong, P., Sheng, Y., Chang, X., Zhang, X.: The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid. J. Phytopathol. 166(5), 346–354 (2018)

    Article  Google Scholar 

  34. 34.

    van den Winkel, D., Bastiaans, H.M.M., Bickelhaupt, F.: Phosphasilene synthesis and reactivity: an improved route to 1-(2,4,6-tri-tert-butylphenyl)-2-tert-butyl-2-(2,4,6-tri-isopropylphenyl)phosphasilene. J. Organomet. Chem. 405(2), 183–194 (1991)

    Article  Google Scholar 

Download references


This work was supported by the Special Fund for Agroscientific Research in the Public Interest (No. 201503135-14); Scientific Research Projects of Shanghai Science and Technology Committee (16391902000).

Author information



Corresponding author

Correspondence to Min-Tian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 205 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, R., Shi, J., Ma, X. et al. Effect of Phenolic Acids Derived from Rice Straw on Botrytis cinerea and Infection on Tomato. Waste Biomass Valor 11, 6555–6563 (2020). https://doi.org/10.1007/s12649-020-00938-1

Download citation


  • Agricultural waste
  • Bioactives
  • Phenolic compound
  • Antimicrobial activity
  • Plant growth
  • Fungicide