Incorporation of Wooden Furniture Wastes in Fired Clay Bricks for Improved Thermal Insulation: A Feasability Study

Abstract

The main objective of this study is to improve thermal insulation of fired clay bricks through addition of wooden furniture waste. The effect of the nature and the amount (5 or 10 wt%) of wooden furniture waste on the properties of the final porous fired brick prepared by extrusion was assessed though measurements of mass loss, drying and sintering shrinkage, porosity, bulk density and thermal conductivity. Results showed that incorporation of wooden furniture waste into the clay mixture yielded increase of porosity after firing and hence decrease of thermal conductivity. For example, addition of 10 wt% wood waste yielded a pore volume fraction of 47% with a conductivity of 0.42 W m−1 K−1. Moreover, due to orientation of the clay platelets, the anisotropy in thermal conductivity was significant, ranging from a ratio of 1.1–1.5.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Pacheco-Togal, F., Lourenco, P., Labrincha, J., Chindaprasirt, P., Kumar, S.: Eco-efficient Masonry Bricks and Blocks: Design. Woodland Publishing, Properties and Durability (2014)

    Google Scholar 

  2. 2.

    Bourret, J., Michot, A., Tessier-Doyen, N., Naït-Ali, B., Pennec, F., Alzina, A., Vicente, J., Peyratout, C.S., Smith, D.S.: Thermal conductivity of very porous kaolin-based ceramics. J. Am. Ceram. Soc. 97, 938–944 (2014). https://doi.org/10.1111/jace.12767

    Article  Google Scholar 

  3. 3.

    Schwartzwalder, K., Somers, A.V.: Method of making porous ceramic articles. US Patent (1963)

  4. 4.

    Hammel, E.C., Ighodaro, O.L.-R., Okoli, O.I.: Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40, 15351–15370 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095

    Article  Google Scholar 

  5. 5.

    Hotta, Y., Alberius, P.C.A., Bergström, L.: Coated polystyrene particles as templates for ordered macroporous silica structures with controlled wall thickness. J. Mater. Chem. 13, 496–501 (2003). https://doi.org/10.1039/b208795m

    Article  Google Scholar 

  6. 6.

    Fitzgerald, T.J., Michaud, V.J., Mortensen, A.: Processing of microcellular SiC foams Part II Ceramic foam production. J. Mater. Sci. 30, 1037–1045 (1995). https://doi.org/10.1007/BF01178442

    Article  Google Scholar 

  7. 7.

    Sutcu, M., Akkurt, S.: The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625–2631 (2009). https://doi.org/10.1016/j.ceramint.2009.02.027

    Article  Google Scholar 

  8. 8.

    Andreola, F., Lancellotti, I., Manfredini, T., Bondioli, F., Barbieri, L.: Rice husk ash (RHA) recycling in brick manufacture: effects on physical and microstructural properties. Waste Biomass Valoriz. 9, 2529–2539 (2018). https://doi.org/10.1007/s12649-018-0343-5

    Article  Google Scholar 

  9. 9.

    Veiseh, S., Yousefi, A.A.: The Use of Polystyrene in Lightweight Brick Production (2003)

  10. 10.

    Živcová, Z., Černý, M., Pabst, W., Gregorová, E.: Elastic properties of porous oxide ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 2765–2771 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.03.033

    Article  Google Scholar 

  11. 11.

    Eliche-Quesada, D., Corpas-Iglesias, F.A., Pérez-Villarejo, L., Iglesias-Godino, F.J.: Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Constr. Build Mater. 34, 275–284 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.079

    Article  Google Scholar 

  12. 12.

    Devant, M., Cusidó, J.A., Soriano, C.: Custom formulation of red ceramics with clay, sewage sludge and forest waste. Appl. Clay Sci. 53, 669–675 (2011). https://doi.org/10.1016/j.clay.2011.06.002

    Article  Google Scholar 

  13. 13.

    Barbieri, L., Andreola, F., Lancellotti, I., Taurino, R.: Management of agricultural biomass wastes: preliminary study on characterization and valorisation in clay matrix bricks. Waste Manag. 33, 2307–2315 (2013). https://doi.org/10.1016/j.wasman.2013.03.014

    Article  Google Scholar 

  14. 14.

    Guinard, L., Deroubaix, G., Roux, M.L., Levet, A.L., Quint, V.: Evaluation du gisement de déchets bois et son positionnement dans la filière bois/bois-énergie (DEBOIDEM), FCBA pour l’ADEME. Marché n°1302C0059, Coordination technique : Marie APRIL - Service Produits et Efficacité Matière, Direction Économie Circulaire et Déchets – ADEME Angers. (2015)

  15. 15.

    APPEL A PROJETS 2017, volet recherche : présentation du projet BRITER en vue d’expertise (2017)

  16. 16.

    NF EN ISO 17892-4: Geotechnical investigation and testing—Laboratory testing of soil—Part 4 : Determination of particle size distribution (2018)

  17. 17.

    NF P 94-051: Soil : investigation and testing. Determination of Atterberg’s limits, Liquid limit test using cassagrande apparatus, Plastic limit test on rolled thread (1993)

  18. 18.

    MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE: Arrêté du 3 août 2018 relatif aux prescriptions générales applicables aux installations relevant du régime de l’enregistrement au titre de rubrique 2910 de la nomenclature des installations classées pour la protection de l’environnement

  19. 19.

    Nigay, P.M., Sani, R., Cutard, T., Nzihou, A.: Modeling of the thermal and mechanical properties of clay ceramics incorporating organic additives. Mater. Sci. Eng. A 708, 375–382 (2017). https://doi.org/10.1016/j.msea.2017.09.131

    Article  Google Scholar 

  20. 20.

    Cumberland, D.J., Crawford, R.J.: The Packing of Particles. Elsevier, Amsterdam (1987)

    Google Scholar 

  21. 21.

    Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  Google Scholar 

  22. 22.

    Smith, D., Alzina, A., Bourret, J., Nait-Ali, B., Pennec, F., Tessier-Doyen, N., Otsu, K., Matsubara, H., Elser, P., Gonzenbach, U.: Thermal conductivity of porous materials. J. Mater. Res. (2013). https://doi.org/10.1557/jmr.2013.179

    Article  Google Scholar 

  23. 23.

    Michot, A., Smith, D.S., Degot, S., Lecomte, G.L.: Effect of dehydroxylation on the specific heat of simple clay mixtures. J. Eur. Ceram. Soc. 31, 1377–1382 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.01.007

    Article  Google Scholar 

  24. 24.

    Ben Lakhal, S., Lecomte-Nana, G., Naït-Ali, B., Lemercier, H., Smith, D.S.: A method for estimating the specific heat capacity of a raw clay mixture. Ziegelindustrie n° 6. 27–35 (2014)

  25. 25.

    Görhan, G., Şimşek, O.: Porous clay bricks manufactured with rice husks. Constr. Build. Mater. 40, 390–396 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.110

    Article  Google Scholar 

  26. 26.

    BIA: The Brick Industry Association (USA) (Technical notes on Brick Construction 9, Manufacturing of Brick) (2006)

  27. 27.

    Nigay, P.M., Cutard, T., Nzihou, A.: The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties. Ceram. Int. 43, 1747–1754 (2017). https://doi.org/10.1016/j.ceramint.2016.10.084

    Article  Google Scholar 

  28. 28.

    Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952). https://doi.org/10.1063/1.1702301

    Article  Google Scholar 

  29. 29.

    Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1892)

    Google Scholar 

  30. 30.

    Holman, J.P.: Heat Transfer. McGraw-Hill Book Company, New York (1986)

    Google Scholar 

  31. 31.

    Bourret, J., Tessier-Doyen, N., Guinebretiere, R., Joussein, E., Smith, D.S.: Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: evolution with thermal treatment. Appl. Clay Sci. 116–117, 150–157 (2015). https://doi.org/10.1016/j.clay.2015.08.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by the TREMPLIN CARNOT MECD and the Region Nouvelle-Aquitaine.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Peyratout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abjaghou, H., Bourret, J., Tessier-Doyen, N. et al. Incorporation of Wooden Furniture Wastes in Fired Clay Bricks for Improved Thermal Insulation: A Feasability Study. Waste Biomass Valor 11, 6943–6951 (2020). https://doi.org/10.1007/s12649-020-00933-6

Download citation

Keywords

  • Thermal insulation
  • Wooden furniture wastes
  • Fired clay bricks
  • Building materials