Optimization of Culture Conditions During the Solid-State Fermentation of Tea Residue Using Mixed Strains


In the present research mixed strains of Bacillus subtilis, Aspergillus niger and Saccharomyces cerevisiae were used for solid state fermentation of tea residue. Fermentation conditions were optimized using response surface methodology as: temperature 29.24%, water content 54.14%, fermentation time 5.58 days, B. subtilis: A. niger: S. cerevisiae inoculum ratio 1:1:2. At optimal conditions there was a significant increase in crude protein (CP), the reducing sugar, cellulose activity of 19.32%, 39.5%, 33.3% respectively in comparison with pre-fermentation.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Almajano, M.P., Carbó, R., Jiménez, J.A.L., Gordon, M.H.: Antioxidant and antimicrobial activities of tea infusions. Food Chem. 108, 55–63 (2008)

    Google Scholar 

  2. 2.

    Ayim, I., Ma, H., Ali, Z., Alenyorege, E.A., Donkor, P.O.: Preparation of antioxidant peptides from tea (Camellia sinensis L.) residue. J. Food Meas. Charcat. 12, 2128–2137 (2018)

    Google Scholar 

  3. 3.

    Malkoc, E., Nuhoglu, Y.: Removal of Ni (II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J. Hazard. Mater. 135, 328–336 (2006)

    Google Scholar 

  4. 4.

    Yücel, Y., Göycıncık, S.: Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste Biomass Valoriz. 6, 1077–1084 (2015)

    Google Scholar 

  5. 5.

    Yue, N., Kuang, H., Sun, L., Wu, L.H., Xu, C.L.: An empirical analysis of the impact of EU's new food safety standards on China's tea export. Int. J. Food Sci. Technol. 45, 745–750 (2010)

    Google Scholar 

  6. 6.

    Yang, X., Cui, X.: Adsorption characteristics of Pb (II) on alkali treated tea residue. Water Resour. Ind. 3, 1–10 (2013)

    Google Scholar 

  7. 7.

    Krishnapillai, S.: Effect of waste tea (tea fluff) on growth of young tea plants (Camellia sinensis L.). Cancer Res. 69, 3347–3355 (1981)

    Google Scholar 

  8. 8.

    Newey, H., Smyth, D.H.: Intracellular hydrolysis of dipeptides during intestinal absorption. J. Physiol. 152, 367–380 (1960)

    Google Scholar 

  9. 9.

    Dizadji, N., Anaraki, N.A.: Adsorption of chromium and copper in aqueous solutions using tea residue. Int. J. Environ. Sci. Technol. 8, 631–638 (2011)

    Google Scholar 

  10. 10.

    Liu, Y., Lu, F., Chen, G., Snyder, C.L., Jing, S., Yu, L., Wang, J., Jing, X.: High-level expression, purification and characterization of a recombinant medium-temperature α -amylase from Bacillus subtilis. Biotechnol. Lett. 32, 119–124 (2010)

    Google Scholar 

  11. 11.

    Soma, M., Rangasamy, M.: Production of cellulose by Aspergillus niger under submerged and solid-state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127 (2011)

    Google Scholar 

  12. 12.

    Chanda, S., Chakrabarti, S.: Plant origin liquid waste: a resource for singlecell protein production by yeast. Bioresour. Technol. 57, 51–54 (1996)

    Google Scholar 

  13. 13.

    Ghorai, S., Banik, S.P., Chowdhury, V.S., Mukherjee, S., Khowala, S.: Fungal biotechnology in food and feed processing. Food Res. Int. 42, 577–587 (2009)

    Google Scholar 

  14. 14.

    Herrero, M.L., Vallejo, M.D., Sardella, M.F., Deiana, A.C.: Acid pretreatment of two-phase olive mill waste to improve bioavailable sugars: conditions optimization using response surface methodology. Waste Biomass Valoriz. 6, 37–44 (2015)

    Google Scholar 

  15. 15.

    Yücel, Y.: Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatal. Agric. Biotechnol. 1, 39–44 (2012)

    Google Scholar 

  16. 16.

    Rai, K.P., Zhang, C., Wen, S.X.: Effects of pure starter cultures on physico-chemical and sensory quality of dry fermented Chinese-style sausage. J. Food Sci. Technol. 47, 188–194 (2010)

    Google Scholar 

  17. 17.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  18. 18.

    Anson, M.L.: The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79–89 (1938)

    Google Scholar 

  19. 19.

    Wang, F., Ni, H., Cai, H.N., Xiao, A.F.: Tea stalks—a novel agro-residue for the production of tannase under;solid state fermentation by Aspergillus nigerJMU-TS528. Ann. Microbiol. 63, 897–904 (2013)

    Google Scholar 

  20. 20.

    Chatterjee, R., Dutta, A., Banerjee, R., Bhattacharyya, B.C.: Production of tannase by solid-state fermentation. Bioprocess Biosyst. Eng. 14, 159–162 (1996)

    Google Scholar 

  21. 21.

    Sabu, A., Pandey, A., Jaafar, M. D., Szakacs, G.: Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour. Technol. 96, 1223–1228 (2005)

    Google Scholar 

  22. 22.

    Kar, B., Banerjee, R., Bhattacharyya, B.C.: Microbial production of gallic acid by modified solid state fermentation. J. Ind. Microbiol. Biotechnol. 23, 173–177 (1999)

    Google Scholar 

  23. 23.

    Maehara, L., Pereira, S.C., Silva, A.J., Farinas, C.S.: One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol. Prog. 34, 671–680 (2018)

    Google Scholar 

  24. 24.

    Buzzini, P., Gobbetti, M., Rossi, J., Ribaldi, M.: Utilization of grape must and concentrated rectified grape must to produce gluconic acid by Aspergillus niger, in batch fermentations. Biotechnol. Lett. 15, 151–156 (1993)

    Google Scholar 

  25. 25.

    Kashyap, P., Sabu, A., Pandey, A., Szakacs, G., Soccol, C.R.: Extracellular l-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem. 38, 307–312 (2002)

    Google Scholar 

  26. 26.

    Banerjee, D., Mondal, K.C., Pati, B.R.: Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol. Immunol. Hung. 54, 159–166 (2007)

    Google Scholar 

  27. 27.

    Vu, V.H., Pham, T.A., Kim, K.: Improvement of fungal cellulases production by mutation and optimization of solid-state fermentation. Mycobiol. 39, 20–25 (2011)

    Google Scholar 

  28. 28.

    Mekala, N.K., Singhania, R.R., Sukumaran, R.K., Pandey, A.: Cellulase production under solid state fermentation by Trichodermareesei RUT-30: statistical optimization of process parameters. Appl. Biochem. Biotechnol. 151, 122–131 (2008)

    Google Scholar 

  29. 29.

    Schumann, W.: Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 27, 137–189 (2007)

    Google Scholar 

  30. 30.

    Zhang, X.Z., Zhang, Y.H.P.: One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges. Eng. Life Sci. 10, 398–406 (2010)

    Google Scholar 

  31. 31.

    Li, W., Zhou, X., Lu, P.: Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res. Microbiol. 155, 605–610 (2004)

    Google Scholar 

  32. 32.

    Bailey, M.J., Tähtiharju, J.: Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl. Microbiol. Biotechnol. 62, 156–162 (2003)

    Google Scholar 

  33. 33.

    Sanghi, A., Garg, N., Kuhar, K., Kuhad, R.C., Gupta, V.K.: Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. BioResources 4, 1109–1129 (2009)

    Google Scholar 

  34. 34.

    Reese, E.T., Siu, R.G.H., Levinson, H.S.: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497 (1950)

    Google Scholar 

  35. 35.

    Wood, T.M., Mccrae, S.I.: Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181, 181–209 (1979)

    Google Scholar 

  36. 36.

    Cunha, F.M., Esperança, M.N., Zangirolami, T.C., Badino, A.C., Farinas, C.S.: Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour. Technol. 112, 270–274 (2012)

    Google Scholar 

  37. 37.

    Asha, B.M., Sakthivel, N.: Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Ann. Microbiol. 64, 1839–1848 (2014)

    Google Scholar 

  38. 38.

    Li, X., Yu, H.Y.: Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. J. Ind. Microbiol. Biotechnol. 39, 1117–1124 (2012)

    Google Scholar 

  39. 39.

    Kang, L.H., L-Mu, L.I., Xiong-Yuan, S.I., Bin, L.I., Guo, W.J., Hua, M.U., Ding, X.L., Fa-Zhi, X.U.: Screening of the strains and antioxidant activity of small peptide from solid-state fermentation of the residue from wheat alcohol processing. Food Ferment. Ind. 40, 72–76 (2014).

    Google Scholar 

  40. 40.

    Kumar, S., Sharma, H.K., Sarkar, B.C.: Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid-state fermentation (SSF). Food Sci. Biotechnol. 20, 1289–1298 (2011)

    Google Scholar 

  41. 41.

    Marcus, S., Ajay, S., Ward, O.P.: Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1 (2004)

    Google Scholar 

  42. 42.

    Nawab, A., Nimat, U., Muhammad, Q., Hazir, R., Shahid, K., Abdul, S., Muhammad, A.: Molecular characterization and growth optimization of halo-tolerant protease producing Bacillus Subtilis strain BLK-1.5 isolated from salt mines of Karak. Pakistan. Extremophiles. 20, 1–8 (2016)

    Google Scholar 

  43. 43.

    Yang, J.K., Shih, I.L., Tzeng, Y.M., Wang, S.L.: Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes☆☆. Enzyme Microb. Technol. 26, 406–413 (2000)

    Google Scholar 

  44. 44.

    Paranthaman, R., Alagusundaram, K., Indhumathi, J.: Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World J. Agric. Sci. 5, 308–312 (2009)

    Google Scholar 

  45. 45.

    Chakraborty, R., Srinivasan, M., Sarkar, S.K., Raghavan, K.V.: Production of acid protease by a new Aspergillus niger by solid state fermentation. J. Microbiol. Biotechnol. 10, 17–30 (1995)

    Google Scholar 

  46. 46.

    Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., Turner, G., de Vries, R.P., Albang, R., et al.: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25, 221–231 (2007)

    Google Scholar 

  47. 47.

    Braaksma, M., Smilde, A.K., Werf, M.J.V.D., Punt, P.J.: The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger. Microbiology 155, 3430–3439 (2009)

    Google Scholar 

Download references


The authors would like to thank Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, for supporting this study. Moreover, the careful teaching and help of Professor Qian Lichun during the experiment.


This research was supported by Dabeinong Funds for Discipline Development and supported by Major Science and Technology Projects in Zhejiang Province (2015C02022).

Author information



Corresponding authors

Correspondence to Jinghui Fan or Lichun Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Yao, L., Hou, Y. et al. Optimization of Culture Conditions During the Solid-State Fermentation of Tea Residue Using Mixed Strains. Waste Biomass Valor 11, 6667–6675 (2020). https://doi.org/10.1007/s12649-019-00930-4

Download citation


  • Fermented tea residue
  • Bacillus subtilis
  • Aspergillus niger
  • Saccharomyces cerevisiae
  • Response surface methodology