Challenges of Enzymes, Conidia and 6-Pentyl-alpha-pyrone Production from Solid-State-Fermentation of Agroindustrial Wastes Using Experimental Design and T. asperellum Strains

Abstract

In a context of growing awareness regarding environmental protection, biomass valorization is gaining a lot of attention. The byproducts volumes generated by agro-industry are massive and, left to decay, can constitute environmental pollutions. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers advantages to produce value-added products such as antibiotics, pigments, aromas and enzymes of industrial interest like cellulases, chitinases, amylases, etc. Several studies have already demonstrated the advantages of SSF for the production of fungal metabolites, yet the optimal conditions for metabolites production strongly depend on the culture conditions and microbial strain utilized. Therefore, the aim of this study was to improve the conidia, lytic enzymes (cellulase, lipase and amylase), and antifungal—6-pentyl-alpha-pyrones (6-PP)—production by three Trichoderma asperellum strains cultivated using SSF. Designs of experiments have been achieved in order to identify influential factors on 6-PP, conidia and enzymes (cellulase, lipase, and amylase) production by the fungal culture. A significantly enzymes activities, conidiation and 6-PP production were observed on mix of substrates: vine shoots, potatoes flour, jatropha, olive pomace and olive oil on high carbon/nitrogen ratio 37 which was used by T. asperellum TV104 as a source of nutrients and also as a matrix.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Couto, S.R., Sanromán, M.A.: Application of solid-state fermentation to food industry. J. Food Eng. 76, 291–302 (2006)

    Google Scholar 

  2. 2.

    Nigam, P.S.: Production of bioactive secondary metabolites. In: Biotechnology for Agro-industrial Residues Utilisation. Springer, Dordrecht (2009)

  3. 3.

    Mascarin, G.M., Jaronski, S.T.: The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 32(11), 177 (2016)

    Google Scholar 

  4. 4.

    Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)

    Google Scholar 

  5. 5.

    Mateos Diaz, J.C., Rodriguez, J.A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., Baratti, J.: Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb. Technol. 39, 1042–1050 (2006)

    Google Scholar 

  6. 6.

    O’Callaghan, M.: Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746 (2016)

    Google Scholar 

  7. 7.

    De la Cruz-Quiroz, R., Roussos, S., Hernandez-Castillo, D., Rodríguez-Herrera, R., López, L.I.L., Castillo, F., Aguilar, C.N.: Chapter 03: solid-state fermentation in a bag bioreactor: effect of corn cob mixed with phytopathogen biomass on spore and cellulase production by Trichoderma asperellum. In: Jozala, A.F. (ed.) Fermentation Processes. InTech, Rijeka (2017)

    Google Scholar 

  8. 8.

    Carboué, Q., Perraud-Gaime, I., Tranier, M.S., Roussos, S.: Production of microbial enzymes by solid state fermentation for food applications. In: Ray, R.C., Rosell, C.M. (eds.) Microbial Enzyme Technology for Food Applications, pp. 437–451. CRC Press, Boca Raton (2017)

    Google Scholar 

  9. 9.

    De la Cruz Quiroz, R., Roussos, S., Hernández, D., Rodríguez, R., Castillo, F., Aguilar, C.N.: Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model. Crit. Rev. Biotechnol. 35, 326–333 (2015)

    Google Scholar 

  10. 10.

    Shi, Y., Xu, X., Zhu, Y.: Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse. Appl. Microbiol. Biotechnol. 82, 921–927 (2009)

    Google Scholar 

  11. 11.

    Fadel, H.H.M., Gomaa Mahmoud, M., Selim Asker, M.M., Nazeh Lotfy, S.: Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron. J. Biotechnol. 18, 5–9 (2015)

    Google Scholar 

  12. 12.

    Yong, F.M., Wong, H.A., Lim, G.: Effect of nitrogen source on aroma production by Trichoderma viride. Appl. Microbiol. Biotechnol. 22, 146–147 (1985)

    Google Scholar 

  13. 13.

    Carboué, Q., Claeys-Bruno, M., Bombarda, I., Sergent, M., Jolain, J., Roussos, S.: Experimental design and solid state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom. Intell. Lab. Syst. 176, 101–107 (2018)

    Google Scholar 

  14. 14.

    De la Cruz-Quiroz, R., Robledo-Padilla, F., Aguilar, C.N., Roussos, S.: Forced aeration influence on the production of spores by Trichoderma strains. Waste Biomass Valoriz. 8, 2263–2270 (2017)

    Google Scholar 

  15. 15.

    Boubaker, F., Cheikh Ridha, B.: Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature. Bioresour. Technol. 98, 769–774 (2007)

    Google Scholar 

  16. 16.

    Rébufa, C., Pany, I., Bombarda, I.: NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: prediction of minerals, protein and moisture contents. Food Chem. 261, 311–321 (2018)

    Google Scholar 

  17. 17.

    Rueda, A., Seiquer, I., Olalla, M., Gimérez, R., Lara, L., Cabrera-Vique, C.: Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography. J. Chem. 8, 843–908 (2014)

    Google Scholar 

  18. 18.

    Jingura, R.M., Kamusoko, R.: Experiences with Jatropha cultivation in sub-Saharan Africa: lessons for the next phase of development. Afr. J. Sci. Technol. Innov. Dev. 6, 333–337 (2014)

    Google Scholar 

  19. 19.

    Pandey, A., Soccol, C.R., Mitchell, D.: New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 35, 1153–1169 (2000)

    Google Scholar 

  20. 20.

    De Souza Ramos, A., Fiaux, S.B., Ferreira Leite, S.G.: Production of 6-pentyl-α-pyrone by Trichoderma harzianum in solid-state fermentation. Braz. J. Microbiol. 39, 712–717 (2008)

    Google Scholar 

  21. 21.

    Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters, pp. 203–207. Wiley, New York (1978)

    Google Scholar 

  22. 22.

    Droesbeke, J.J., Fine, J., Saporta, G.: Plans d’expériences, Applications à l’entreprise. Technip, Paris (1997)

    Google Scholar 

  23. 23.

    Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2001)

    Google Scholar 

  24. 24.

    Cela, R., Phan-Tan-Luu, R., Claeys-Bruno, M.: Screening strategies. In: Tauler, R., Walczak, B., Brown, S.D. (eds.) Comprehensive Chemometrics, pp. 251–300. Elsevier, Oxford (2009)

    Google Scholar 

  25. 25.

    Plackett, R.L., Burman, J.P.: Design of optimal multifactorial experiments. Biometrika 23, 305–325 (1946)

    MATH  Google Scholar 

  26. 26.

    Hamrouni, R., Molinet, J., Miché, L., Carboué, Q., Dupuy, N., Masmoudi, A., Roussos S.: Production of coconut aroma in solid-state cultivation: screening and identification of Trichoderma strains for 6-pentyl-alpha-pyrone and conidia production. J. Chem. ID 8562384 (2019)

  27. 27.

    Roussos, S., Olmos, A., Raimbault, M., Saucedo-Castañeda, G., Lonsane, B.K.: Strategies for large scale inoculum development for solid state fermentation system: conidiospores of Trichoderma harzianum. Biotechnol. Tech. 5, 415–420 (1991)

    Google Scholar 

  28. 28.

    Singh, S., Singh, S., Bali, V., Sharma, L., Mangla, J.: Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. Biomed. Res. Int. 10, 1155–2158 (2014)

    Google Scholar 

  29. 29.

    Sarhy-Bagnon, V., Lozano, P., Saucedo-Castañeda, G., Roussos, S.: Production of 6-pentyl-alpha-pyrone by Trichoderma harzianum liquid and solid state cultures. Process Biochem. 36, 103–109 (2000)

    Google Scholar 

  30. 30.

    Demir, H., Tarı, C.: Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crops Prod. 54, 302–309 (2014)

    Google Scholar 

  31. 31.

    Soccol, C.R., Scopel Ferreira da Costa, E., Letti, L.A.J., Karp, S.G., Woiciechowski, A.L., de Souza Vandenberghe, L.P.: Recent developments and innovations in solid state fermentation. Microbiol. Res. J. 1, 52–71 (2017)

    Google Scholar 

  32. 32.

    El Achaby, M., El Miri, N., Hannache, H., Gmouh, S., Ben Youcef, H., Aboulkas, A.: Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int. J. Biol. Macromol. 117, 592–600 (2018)

    Google Scholar 

  33. 33.

    Sharma, A., Tewari, R., Rana, S.S., Soni, R., Soni, S.K.: Cellulases: classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 179, 1346–1380 (2016)

    Google Scholar 

  34. 34.

    Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra Gonzalez, G.: Advances in Solid State Fermentation, p. 631. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  35. 35.

    Stoykov, Y.M., Pavlov, A.I., Krastanov, A.I.: Chitinase biotechnology: production, purification, and application. Eng. Life Sci. 15, 30–38 (2015)

    Google Scholar 

  36. 36.

    Maurya, D.P., Singh, D., Pratap, D., Maurya, J.P.: Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol. 33, 5–8 (2012)

    Google Scholar 

  37. 37.

    Pham, T.A., Kim, J.J., Kim, K.: Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology 38, 129–137 (2010)

    Google Scholar 

  38. 38.

    Sadaf, A., Khare, S.K.: Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosaccharide synthesis. Bioresour. Technol. 153, 126–130 (2014)

    Google Scholar 

  39. 39.

    Galindo, E., Flores, C., Larralde-Corona, P., Corkidi-Blanco, G., Rocha-Valadez, J.A., Serrano-Carreon, L.: Production of 6-pentyl-alpha-pyrone by Trichoderma harzianum cultured in unbaffled and baffled shake flasks. Biochem. Eng. J. 18, 1–8 (2004)

    Google Scholar 

  40. 40.

    Oda, S., Isshiki, K., Ohashi, S.: Production of 6-pentyl-a-pyrone with T. atroviride and its mutant a novel extractive liquid-surface immobilization (EXT-LSI) system. Process Biochem. 44, 625–630 (2009)

    Google Scholar 

  41. 41.

    Rocha-Valadez, A.J., Estrada, M., Galindo, E., Serrano-Carreon, L.: From shake flasks to stirred fermentors: scale-up of an extractive fermentation process for 6-pentyl-a-pyrone production by Trichoderma harzianum using volumetric power input. Process Biochem. 41, 1347–1352 (2016)

    Google Scholar 

  42. 42.

    Onilude, A.A., Adebayo-Tayo, B.C., Odeniyi, A.O., Banjo, D., Garuba, E.O.: Comparative mycelial and spore yield by Trichoderma viride in batch and fed-batch cultures. Ann. Microbiol. 63, 547–553 (2013)

    Google Scholar 

  43. 43.

    Viniegra-González, G., Guevara-Gonzalez, R., Torres-Pacheco, I.: New horizons for the production of industrial enzymes by solid-state fermentation. In: Guevara-Gonzalez, R., Torres-Pacheco, I. (eds.) Biosystems Engineering: Biofactories for Food Production in the Century XXI, pp. 319–340. Springer, New York (2014)

    Google Scholar 

  44. 44.

    Chen, L., Yang, X., Raza, W., Luo, J., Zhang, F., Shen, Q.: Solid state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour. Technol. 102, 3900–3910 (2011)

    Google Scholar 

  45. 45.

    Charrouf, Z., Guillaume, D.: Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. J. Ethnopharmacol. 67, 7–14 (2011)

    Google Scholar 

  46. 46.

    Ollivier, D., Pinatel, C., Ollivier, V., Artaud, J.: Creation of a database of the fatty acid and triacylglycerol composition of virgin olive oils produced from 34 French varieties, eight French designations of origin and two foreign varieties grown in France (Part I). OLIVÆ 119, 35–47 (2014)

    Google Scholar 

  47. 47.

    Medouni-Haroune, L., Zaidi, F., Medouni-Adrar, S., Kecha, M.: Olive pomace: from an olive mill waste to a resource, an overview of the new treatments. J. Crit. Rev. 5, 1–6 (2018)

    Google Scholar 

  48. 48.

    Amsallem, I., Tréboux, M.: Jatropha cake: perspectives and constraints for valorization. Jatroref (2014). www.jatroref.org

  49. 49.

    Windépagnagdé Yaméogo, C., Daba Bengaly, M., Savadogo, A., Augustin Nikiema, P., Traore, S.A.: Determination of chemical composition and nutritional values of Moringa oleifera leaves. Pak. J. Nutr. 10, 264–268 (2011)

    Google Scholar 

  50. 50.

    Sabry, S.A.: Protein-enrichment of wheat bran using Aspergillus terreus. Microbiologia 9, 125–133 (1993)

    Google Scholar 

  51. 51.

    Avula, R.Y., Singh, R.K.: Functional Properties of Potato Flour and Its Role in Product Development: A Review. Food, Special Issue. Global Science Books, pp. 105–112 (2009)

  52. 52.

    Molina-Alcaide, E., Moumen, A., Martın-Garcia, A.I.: By-products from viticulture and the wine industry: potential as sources of nutrients for ruminants. J. Sci. Food Agric. 88, 597–604 (2008)

    Google Scholar 

  53. 53.

    Kim, M., Day, D.F.: Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 38, 803–807 (2011)

    Google Scholar 

  54. 54.

    Song, Z., Li, G., Guan, F., Liu, W.: Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers 10, 389 (2018)

    Google Scholar 

Download references

Acknowledgements

Authors thank EURASMUS+ mobility for the financial support during the stay in France. R.H. also thank Tunisian Republic “Tunis El Manar University”, the LR Biotechnology and Bio-Geo Resources Valorization (LR11ES31), the Higher Institute for Biotechnology “University of Manouba”, the Institut Méditerranén de Biodiversité et d’Ecologie Marine et Continentale (IMBE), and the Planning Direction Office of Aix Marseille University for the support and technical facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rayhane Hamrouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamrouni, R., Claeys-Bruno, M., Molinet, J. et al. Challenges of Enzymes, Conidia and 6-Pentyl-alpha-pyrone Production from Solid-State-Fermentation of Agroindustrial Wastes Using Experimental Design and T. asperellum Strains. Waste Biomass Valor 11, 5699–5710 (2020). https://doi.org/10.1007/s12649-019-00908-2

Download citation

Keywords

  • Solid-state-fermentation
  • Trichoderma asperellum
  • Optimization
  • Agroindustrial wastes
  • Experimental design