Concentration of Alkaline Hydrogen Peroxide (AHP) Affects the Recycle of the Liquid Fraction in the Pre-treatment and Enzymatic Hydrolysis of Corn Stover

Abstract

Pre-treatment is one of main economic and technological challenges to render feasible the production of biofuels and chemical compounds from lignocellulosic biomass. Alkaline hydrogen peroxide (AHP) is the most used pre-treatment and recycling of its liquid fraction can help reduce production costs. The effects of four AHP concentrations (1, 3.5, 5 and 7.5% v/v) on the recycling performance of the liquid fraction of pre-treated corn stover was evaluated for five consecutive cycles. Delignification rates increased with increasing AHP concentrations in the first cycle: 15, 26, 43 and 76% with 1, 3.5, 5 and 7.5% v/v H2O2, respectively. In the following cycles, the rates decreased linearly reaching less than 40% in the last two recycles. These delignification rates and hemicellulose solubilization were corroborated by spectroscopic analyses with Fourier transformation showing reductions in lignin and hemicellulose absorbance and increases in crystallinity indices. Considering the low delignification rates in the last two cycles, the pre-treated biomasses obtained until the third cycle were submitted to enzymatic hydrolysis at 1:10 solid–liquid ratio. The delignification rates affected the efficiency of the enzymatic hydrolysis at all AHP concentrations and all recycles. The highest AHP concentration (7.5% v/v) was required to efficiently remove lignin and solubilize hemicellulose, maintaining cellulose conversion into glucose greater than 50% up to three recycles. Therefore, the technology of recycling the liquid solution of AHP pre-treatment is recommended with high initial concentrations (7.5% v/v).

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  2. 2.

    Guo, M., Song, W., Buhain, J.: Bioenergy and biofuels: history, status, and perspective. Renew. Sustain. Energy Rev. 42, 712–725 (2015). https://doi.org/10.1016/j.rser.2014.10.013

    Article  Google Scholar 

  3. 3.

    Wang, W., Chen, X., Tan, X., Wang, Q., Liu, Y., He, M., Yu, Q., Qi, W., Luo, Y., Zhuang, X., Yuan, Z.: Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 228, 235–240 (2017). https://doi.org/10.1016/j.biortech.2016.12.076

    Article  Google Scholar 

  4. 4.

    Fiorentino, G., Ripa, M., Ulgiati, S.: Chemicals from biomass: technological versus environmental feasibility. A review. Biofuels Bioprod. Biorefin. 11, 195–214 (2017). https://doi.org/10.1002/bbb.1729

    Article  Google Scholar 

  5. 5.

    Tye, Y.Y., Lee, K.T., Abdullah, W.N.W., Leh, C.P.: The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 60, 155–172 (2016). https://doi.org/10.1016/j.rser.2016.01.072

    Article  Google Scholar 

  6. 6.

    Ebadian, M., Sokhansanj, S., Webb, E.: Estimating the required logistical resources to support the development of a sustainable corn stover bioeconomy in the USA. Biofuels Bioprod. Biorefin. 11, 129–149 (2017). https://doi.org/10.1002/bbb.1736

    Article  Google Scholar 

  7. 7.

    Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., Zacchi, G.: Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549–556 (2006). https://doi.org/10.1016/j.tibtech.2006.10.004

    Article  Google Scholar 

  8. 8.

    Rabemanolontsoa, H., Saka, S.: Various pretreatments of lignocellulosics. Bioresour. Technol. 199, 83–91 (2016). https://doi.org/10.1016/j.biortech.2015.08.029

    Article  Google Scholar 

  9. 9.

    Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2, 26–40 (2008). https://doi.org/10.1002/bbb.49

    Article  Google Scholar 

  10. 10.

    Baral, N.R., Shah, A.: Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour. Technol. 232, 331–343 (2017). https://doi.org/10.1016/j.biortech.2017.02.068

    Article  Google Scholar 

  11. 11.

    Banerjee, G., Car, S., Liu, T., Williams, D.L., Meza, S.L., Walton, J.D., Hodge, D.B.: Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol. Bioeng. 109(4), 922–931 (2012). https://doi.org/10.1002/bit.24385

    Article  Google Scholar 

  12. 12.

    Qing, Q., Zhou, L., Guo, Q., Gao, X., Zhang, Y., He, Y., Zhang, Y.: Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresour. Technol. 233, 284–290 (2017). https://doi.org/10.1016/j.biortech.2017.02.106

    Article  Google Scholar 

  13. 13.

    Rabelo, S.C., da Costa, A.C., Rossel, C.E.V.: Industrial waste recovery. In: Sugarcane, pp. 365–381. Elsevier, New York (2015)

  14. 14.

    Dutra, E.D., Santos, F.A., Alencar, B.R.A., Reis, A.L.S., de Souza, R.D.F.R., da Silva Aquino, K.A., Menezes, R.S.C.: Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Convers. Biorefin. 8, 225–234 (2018). https://doi.org/10.1007/s13399-017-0277-3

    Article  Google Scholar 

  15. 15.

    Ho, M.C., Ong, V.Z., Wu, T.Y.: Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—a review. Renew. Sustain. Energy Rev. 112, 75–86 (2019). https://doi.org/10.1016/j.rser.2019.04.082

    Article  Google Scholar 

  16. 16.

    da Costa Correia, J.A., Júnior, J.E.M., Gonçalves, L.R.B., Rocha, M.V.P.: Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Biores. Technol. 139, 249–256 (2013). https://doi.org/10.1016/j.biortech.2013.03.153

    Article  Google Scholar 

  17. 17.

    Zhang, H., Huang, S., Wei, W., Zhang, J., Xie, J.: Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. Biotechnol. Biofuels 12, 107 (2019). https://doi.org/10.1186/s13068-019-1454-3

    Article  Google Scholar 

  18. 18.

    Alencar, B.R.A., Reis, A.L.S., de Souza, R.D.F.R., Morais Jr., M.A., Menezes, R.S.C., Dutra, E.D.: Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresour. Technol. 241, 928–935 (2017). https://doi.org/10.1016/j.biortech.2017.06.022

    Article  Google Scholar 

  19. 19.

    Rocha, G.J.M., Nascimento, V.M., Silva, V.F.N.D., Corso, D.L.S., Gonçalves, A.R.: Contributing to the environmental sustainability of the second generation ethanol production: delignification of sugarcane bagasse with sodium hydroxide recycling. Ind. Crops Prod 59, 63–68 (2014). https://doi.org/10.1016/j.indcrop.2014.05.002

    Article  Google Scholar 

  20. 20.

    Yao, F., Tian, D., Shen, F., Hu, J., Zeng, Y., Yang, G., Zhang, Y., Deng, S., Zhang, J.: Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol. Bioresour. Technol. 275, 19–26 (2019). https://doi.org/10.1016/j.biortech.2018.12.040

    Article  Google Scholar 

  21. 21.

    Van Soest, P., Robertson, J., Lewis, B.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)

    Article  Google Scholar 

  22. 22.

    Kataoka, Y., Kondo, T.: FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31(3), 760–764 (1998). https://doi.org/10.1021/ma970768c

    Article  Google Scholar 

  23. 23.

    Song, X., Jiang, Y., Rong, X., Wei, W., Wang, S., Nie, S.: Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Biores. Technol. 216, 1098–1101 (2016). https://doi.org/10.1016/j.biortech.2016.06.026

    Article  Google Scholar 

  24. 24.

    Rabelo, S.C., Fonseca, N.A., Andrade, R.R., Maciel Filho, R., Costa, A.C.: Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenerg. 35, 2600–2607 (2011). https://doi.org/10.1016/j.biombioe.2011.02.042

    Article  Google Scholar 

  25. 25.

    Su, Y., Du, R., Guo, H., Cao, M., Wu, Q., Su, R., Qi, W., He, Z.: Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod. Process. 94, 322–330 (2015). https://doi.org/10.1016/j.fbp.2014.04.001

    Article  Google Scholar 

  26. 26.

    Buranov, A.U., Mazza, G.: Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydr. Polym. 79(1), 17–25 (2010). https://doi.org/10.1016/j.carbpol.2009.06.014

    Article  Google Scholar 

  27. 27.

    Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100(17), 3948–3962 (2009). https://doi.org/10.1016/j.biortech.2009.01.075

    Article  Google Scholar 

  28. 28.

    Sgriccia, N., Hawley, M.C., Misra, M.: Characterization of natural fiber surfaces and natural fiber composites. Compos. A 39(10), 1632–1637 (2008). https://doi.org/10.1016/j.compositesa.2008.07.007

    Article  Google Scholar 

  29. 29.

    Liu, L., Sun, J., Li, M., Wang, S., Pei, H., Zhang, J.: Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Biores. Technol. 100(23), 5853–5858 (2009). https://doi.org/10.1016/j.biortech.2009.06.040

    Article  Google Scholar 

  30. 30.

    Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Biores. Technol. 100(17), 3948–3962 (2009). https://doi.org/10.1016/j.biortech.2009.01.075

    Article  Google Scholar 

  31. 31.

    Díaz, A.B., Blandino, A., Belleli, C., Caro, I.: An effective process for pretreating rice husk to enhance enzyme hydrolysis. Ind. Eng. Chem. Res. 53, 10870–10875 (2014). https://doi.org/10.1021/ie501354r

    Article  Google Scholar 

  32. 32.

    Zhao, C., Shao, Q., Ma, Z., Li, B., Zhao, X.: Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind. Crops Prod. 83, 86–93 (2016). https://doi.org/10.1016/j.indcrop.2015.12.018

    Article  Google Scholar 

  33. 33.

    Gould, J.M.: Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol. Bioeng. 27, 225–231 (1985)

    Article  Google Scholar 

  34. 34.

    Banerjee, G., Car, S., Scott-Craig, J.S., Hodge, D.B., Walton, J.D.: Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 4, 16 (2011). https://doi.org/10.1186/1754-6834-4-16

    Article  Google Scholar 

  35. 35.

    Li, Y., Cui, J., Zhang, G., Liu, Z., Guan, H., Hwang, H., Aker, W.G., Wang, P.: Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour. Technol. 214, 144–149 (2016). https://doi.org/10.1016/j.biortech.2016.04.090

    Article  Google Scholar 

  36. 36.

    Martins, L.H., Rabelo, S.C., da Costa, A.C.: Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour. Technol. 191, 312–321 (2015). https://doi.org/10.1016/j.biortech.2015.05.024

    Article  Google Scholar 

  37. 37.

    Saha, B.C., Cotta, M.A.: Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzym. Microb. Technol. 41(4), 528–532 (2007). https://doi.org/10.1016/j.enzmictec.2007.04.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the researchers Dr. Irapuan Pinheiro and Dr. Rafael Souza, from Universidade de Pernambuco, for making available the liquid chromatograph; CETENE for XRD and FTIR analysis and CNPq, CAPES, FACEPE and MCTI for financial support PEGASUS (Processo 441305/2017-2) and ONDACBC - Observatório Nacional da Dinâmica da Água e do Carbono no Bioma Caatinga (INCT-MCTI/CNPQ/CAPES/FAPs (Processo 465764/2014-2) to this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Damilano Dutra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alencar, B.R.A., Vaz, F.L., Barbosa Neto, A.G. et al. Concentration of Alkaline Hydrogen Peroxide (AHP) Affects the Recycle of the Liquid Fraction in the Pre-treatment and Enzymatic Hydrolysis of Corn Stover. Waste Biomass Valor 11, 6179–6188 (2020). https://doi.org/10.1007/s12649-019-00884-7

Download citation

Keywords

  • Lignocellulosic biomass
  • Pre-treatment
  • Recycle liquid fraction
  • Enzymatic hydrolysis