Skip to main content
Log in

Optimization of C. crescentus β-Xylosidases and Expression of xynB1–5 Genes in Response to Agro-Industrial Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The effect of the response surface methodology was applied to the production of Caulobacter crescentus (strain NA1000) β-xylosidases using corn cob. The components of the medium that presented the greatest influence on the enzyme production were chosen for optimization including the concentration of the corn cob residue and temperature variation. Optimal concentrations were determined by a central composite rotational design and a combination of 3.5% (w/v) corn cob concentration and 27 °C temperature was found to be optimal. When C. crescentus was cultivated using the optimized conditions, a maximum activity of 393.36 U/mL of β-xylosidases was achieved in 24-h cultures with a yield of 95% in real test conditions compared to the predicted one. In parallel, there was an increase of 3.6 times in the production of intracellular xylanases when compared to cultures without statistical application. In the C. crescentus genome, 5 genes that encode β-xylosidases are present. In order to evaluate which of them would be induced in the optimized conditions, the quantitative expression (qPCR) of the xynB1xynB5 genes was evaluated in the presence of 1 or 3.5% corn cob (w/v) and surprisingly, all showed a constitutive expression in relation to the control. Assays of Western Blot performed with a polyclonal antiserum against C. crescentus β-xylosidase II in the optimized condition also did not show mass variation of the referred protein. These data strongly suggest that post-transcriptional controls are operating in the induced condition to increase the activity of C. crescentus β-xylosidases I-V, but β-xylosidase II. To our knowledge, this is the first time that these data are reported in literature for a bacterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosetto, A., Justo, P.I., Zanardi, B., Venzon, S.S., Graciano, L., Santos, E.L., Simão, R.C.G.: Research progress concerning fungal and bacterial beta-xylosidases. Appl. Biochem. Biotechnol. 178, 766–795 (2016)

    Article  Google Scholar 

  2. Corrêa, J.M., Christi, D., Della Torre, C.L., Henn, C., Da Conceição-Silva, J.L., Kadowaki, M.K., Simão, R.C.G.: High levels of & #x03B2;-xylosidase in Thermomyces lanuginosus: potential use for saccharification. Braz. J. Microbiol. 47, 680–690 (2016)

    Article  Google Scholar 

  3. Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L., Crosson, S.: The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678–3688 (2010)

    Article  Google Scholar 

  4. Prade, R.A.: Xylanases: from biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13, 101–131 (1996)

    Article  Google Scholar 

  5. Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. 10, 235–251 (2019)

    Article  Google Scholar 

  6. Graciano, L., Corrêa, J.M., Gandra, R.F., Seixas, F.A.V., Kadowaki, M.K., Sampaio, S.C., da Conceição-Silva, Osaku, C.A., Simão, R.C.G.: The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World J. Microbiol. Biotechnol. 28, 2879–2888 (2012)

    Article  Google Scholar 

  7. Corrêa, J.M., Graciano, L., Abrahão, J., Loth, E.A., Gandra, R.F., Kadowaki, M.K., Henn, C., Simão, R.C.G.: Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl. Biochem. Biotechnol. 168, 2218–2229 (2012)

    Article  Google Scholar 

  8. Justo, P.I., Corrêa, J.M., Maller, A., Kadowaki, M.K., Da Conceição-Silva, J.L., Gandra, R.F., Simão, R.C.G.: Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-Xylosidases-α-Arabinosidase member in Caulobacter crescentus. Antonie Van Leeuwenhoek 108, 993–1007 (2015)

    Article  Google Scholar 

  9. Graciano, L., Corrêa, J.M., Vieira, F.G.N., Bosetto, A., Loth, E.A., Kadowaki, M.K., Gandra, R.F., Simão, R.C.G.: Cloning and expression of the xynA1 gene encoding a xylanase of the GH10 group in Caulobacter crescentus. Appl. Biochem. Biotechnol. 175, 3915–3929 (2015)

    Article  Google Scholar 

  10. Li, Q., Wu, T., Qi, Z., Zhao, L., Pei, J., Tang, F.: Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. BMC Biotechnol. 18(1), 29 (2019)

    Article  Google Scholar 

  11. Zhang, S., Xie, J., Zhao, L., Pei, J., Su, E., Xiao, W., Wang, Z.: Cloning, overexpression and characterization of a thermostable β-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase. Bio-organ. Chem. 85, 159–167 (2019)

    Google Scholar 

  12. Evinger, M., Agabian, N.: Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer. J. Bacteriol. 132, 294–301 (1977)

    Article  Google Scholar 

  13. Johnson, R.C., Ely, B.: Isolation of spontaneously derived mutants of Caulobacter crescentus. Genetics 86, 25–32 (1977)

    Google Scholar 

  14. Corrêa, J.M., Mingori, M.R., Gandra, R.F., Loth, E.A., Seixas, F.A.V., Simão, R.C.G.: Depletion of the xynB2 gene upregulates β-xylosidase expression in C. crescentus. Appl. Biochem. Biotechnol. 172, 1085–1097 (2014)

    Article  Google Scholar 

  15. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  16. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  17. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  18. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 76, 4350–4354 (1979)

    Article  Google Scholar 

  19. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York (1989)

    Google Scholar 

  20. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T.: The Miqe Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009)

    Article  Google Scholar 

  21. Hottes, A.K., Meewan, M., Yang, D., Arana, N., Romero, P., Mcadams, H.H., Stephens, C.: Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J. Bacteriol. 186, 1448–1461 (2004)

    Article  Google Scholar 

  22. Marcolongo, L., La Cara, F., del Monaco, G., Paixão, S.M., Alves, L., Marques, I.P., Ionata, E.: A novel β-xylosidase from Anoxybacillus sp. 3 M towards an improved agro-industrial residues saccharification. Int. J. Biol. Macromol. 122, 1224–1234 (2019)

    Article  Google Scholar 

  23. Vieria, F.G.N., Christ, D., Graciano, L., Corrêa, J.M., Kadowaki, M.K., da Conceição-Silva, J.L., Gandra, R.F., Maller, A., Polizeli, M.L.T.M., Simão, R.C.G.: Experimental design for optimization of β-xylosidase production by A. fumigatus isolated from the Atlantic Forest (Brazil). J. Adv. Biol. Biotechnol. 21(3), 1–16 (2019)

    Article  Google Scholar 

  24. Neumann, A.P., Weimer, P.J., Suen, G.: A global analysis of gene expression in Fibrobacter succinogenes S85 grown on cellulose and soluble sugars at different growth rates. Biotechnol. Biofuels 11, 295 (2018)

    Article  Google Scholar 

  25. Midorikawa, G.E.O., Correa, C.L., Noronha, E.F., Ferreira-Filho, E.X., Togawa, R.C., Costa, M.M.C., Silva-Junior, O.B., Grynberg, P., Miller, R.N.G.: Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front. Bioeng. Biotechnol. 6(123), 1–17 (2018)

    Google Scholar 

  26. Santos, C.R., Polo, C.C., Corrêa, J.M., Simão, R.C.G., Seixas, F.A.V., Murakami, M.T.: Accessory domain changes accessibility and molecular topography of the catalytic interface in monomeric GH39 & #x03B2;-xylosidases. Acta Crystallogr. Sect. D 68, 1339–1345 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

J.M. Corrêa was a PNPD/CAPES scholar. E.L. Santos was a CNPq scholar. R.C.G. Simão was a productivity scholar at Fundação Araucária.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Garcia Simão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, J.M., dos Santos, E.L., Simões, M.R. et al. Optimization of C. crescentus β-Xylosidases and Expression of xynB1–5 Genes in Response to Agro-Industrial Waste. Waste Biomass Valor 11, 6169–6178 (2020). https://doi.org/10.1007/s12649-019-00881-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00881-w

Keywords

Navigation