Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass

Abstract

Purpose

The feasibility of coupling the anaerobic digestion of pig manure and co-pyrolysis of its digestate with milk thistle as lignocellulosic biomass was studied. Kinetic analysis was performed along with an evaluation of energy recovery attained from a combined approach

Methods

Pig slurry was digested under mesophilic semi-continuous conditions. Digestate was dried and submitted to thermogravimetric analysis under inert atmosphere along with milk thistle samples. Kinetic evaluation was carried out using non-isothermal methods. Assessment of the energy obtained from the combined digestion and pyrolysis process was performed.

Results

Digestion resulted in a yield of 308.5 ± 18.2 mL CH4/g VS. The evaluation of co-pyrolysis of mixtures at different contents of milk thistle showed no interactions between the two materials during pyrolysis. The energy need associated with thermal drying of digestate was 476 MJ/m3 of pig slurry.

Conclusions

Co-pyrolysis of lignocellulosic biomass and digestate [25% content of digestate (w/w)] resulted in a lower char production, associated with the lower ash content of the former. The extra supply of energy needed for thermal drying of the digestate might be obtained from co-pyrolysis with biomass. This approach presented an energy recovery of about 29.4%

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Singh, R.P., Ibrahim, M.H., Esa, N., Iliyana, M.S.: Composting of waste from palm oil mill: a sustainable waste management practice. Rev. Environ. Sci. Bio/Technol. 9, 331–344 (2010). https://doi.org/10.1007/s11157-010-9199-2

    Article  Google Scholar 

  2. 2.

    de la Fuente, C., Alburquerque, J.A., Clemente, R., Bernal, M.P.: Soil C and N mineralisation and agricultural value of the products of an anaerobic digestion system. Biol. Fertil. Soils. 49, 313–322 (2013). https://doi.org/10.1007/s00374-012-0719-9

    Article  Google Scholar 

  3. 3.

    Yuan, Z., Pan, X., Chen, T., Liu, X., Zhang, Y., Jiang, S., Sheng, H., Zhang, L.: Evaluating environmental impacts of pig slurry treatment technologies with a life-cycle perspective. J. Clean. Prod. 188, 840–850 (2018). https://doi.org/10.1016/j.jclepro.2018.04.021

    Article  Google Scholar 

  4. 4.

    Riya, S., Suzuki, K., Meng, L., Zhou, S., Terada, A., Hosomi, M.: The influence of the total solid content on the stability of dry-thermophilic anaerobic digestion of rice straw and pig manure. Waste Manag. 76, 350–356 (2018). https://doi.org/10.1016/j.wasman.2018.02.033

    Article  Google Scholar 

  5. 5.

    Risberg, K., Cederlund, H., Pell, M., Arthurson, V., Schnürer, A.: Comparative characterization of digestate versus pig slurry and cow manure—chemical composition and effects on soil microbial activity. Waste Manag. 61, 529–538 (2017). https://doi.org/10.1016/j.wasman.2016.12.016

    Article  Google Scholar 

  6. 6.

    Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., Henrich, E.: Techno-economic analysis of fast pyrolysis as a process step within biomass-to-liquid fuel production. Waste Biomass Valori. 1, 415–430 (2010). https://doi.org/10.1007/s12649-010-9039-1

    Article  Google Scholar 

  7. 7.

    Vamvuka, D., Sfakiotakis, S.: Thermal behaviour and reactivity of swine sludge and olive by-products during co-pyrolysis and co-combustion. Waste Biomass Valori. (2017). https://doi.org/10.1007/s12649-017-0118-4

    Article  Google Scholar 

  8. 8.

    Hawash, S.I., Farah, J.Y., El-Diwani, G.: Pyrolysis of agriculture wastes for bio-oil and char production. J. Anal. Appl. Pyrolysis. 124, 369–372 (2017). https://doi.org/10.1016/j.jaap.2016.12.021

    Article  Google Scholar 

  9. 9.

    Wei, Y., Hong, J., Ji, W.: Thermal characterization and pyrolysis of digestate for phenol production. Fuel 232, 141–146 (2018). https://doi.org/10.1016/j.fuel.2018.05.134

    Article  Google Scholar 

  10. 10.

    Gumisiriza, R., Hawumba, J.F., Okure, M., Hensel, O.: Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol. Biofuels. 10, 11 (2017). https://doi.org/10.1186/s13068-016-0689-5

    Article  Google Scholar 

  11. 11.

    Mao, G., Huang, N., Chen, L., Wang, H.: Research on biomass energy and environment from the past to the future: a bibliometric analysis. Sci. Total Environ. 635, 1081–1090 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.173

    Article  Google Scholar 

  12. 12.

    Cao, Y., Pawłowski, A.: Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 16, 1657–1665 (2012). https://doi.org/10.1016/J.RSER.2011.12.014

    Article  Google Scholar 

  13. 13.

    Fabbri, D., Torri, C.: Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 38, 167–173 (2016). https://doi.org/10.1016/J.COPBIO.2016.02.004

    Article  Google Scholar 

  14. 14.

    Ledda, L., Deligios, P.A., Farci, R., Sulas, L.: Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crops Prod. 47, 218–226 (2013). https://doi.org/10.1016/J.INDCROP.2013.03.013

    Article  Google Scholar 

  15. 15.

    Bernal, M.P., Gómez, X., Chang, R., Arco-Lázaro, E., Clemente, R.: Strategies for the use of plant biomass obtained in the phytostabilisation of trace-element-contaminated soils. Biomass Bioenerg. 126, 220–230 (2019). https://doi.org/10.1016/j.biombioe.2019.05.017

    Article  Google Scholar 

  16. 16.

    Domínguez, M.T., Montiel-Rozas, M.M., Madejón, P., Díaz, M.J., Madejón, E.: The potential of native species as bioenergy crops on trace-element contaminated Mediterranean lands. Sci. Total Environ. 590–591, 29–39 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.018

    Article  Google Scholar 

  17. 17.

    APHA: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington DC (1998)

  18. 18.

    Dahiya, J.B., Kumar, K., Muller-Hagedorn, M., Bockhorn, H.: Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym. Int. 57, 722–729 (2008). https://doi.org/10.1002/pi.2398

    Article  Google Scholar 

  19. 19.

    Cruz, G., Crnkovic, P.M.: Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J. Therm. Anal. Calorim. 123, 1003–1011 (2016). https://doi.org/10.1007/s10973-015-4908-2

    Article  Google Scholar 

  20. 20.

    Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965). https://doi.org/10.1246/bcsj.38.1881

    Article  Google Scholar 

  21. 21.

    Flynn, J.H., Wall, L.A.: A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B 4, 323–328 (1966). https://doi.org/10.1002/pol.1966.110040504

    Article  Google Scholar 

  22. 22.

    Doyle, C.D.: Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6, 639–642 (1962). https://doi.org/10.1002/app.1962.070062406

    Article  Google Scholar 

  23. 23.

    Vyazovkin, S.: Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J. Comput. Chem. 18, 393–402 (1997). https://doi.org/10.1002/(SICI)1096-987X(199702)18:3%3c393:AID-JCC9%3e3.0.CO;2-P

    Article  Google Scholar 

  24. 24.

    Otero, M., Calvo, L.F., Gil, M.V., García, A.I., Morán, A.: Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 99, 6311–6319 (2008). https://doi.org/10.1016/J.BIORTECH.2007.12.011

    Article  Google Scholar 

  25. 25.

    Sanchez, M.E., Otero, M., Gómez, X., Morán, A.: Thermogravimetric kinetic analysis of the combustion of biowastes. Renew. Energ. 34, 1622–1627 (2009). https://doi.org/10.1016/J.RENENE.2008.11.011

    Article  Google Scholar 

  26. 26.

    Gianico, A., Braguglia, C.M., Gallipoli, A., Mininni, G.: Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance. Environ. Sci. Pollut. R. 22, 7248–7256 (2015). https://doi.org/10.1007/s11356-014-3123-1

    Article  Google Scholar 

  27. 27.

    Zupančič, G.D., Roš, M.: Heat and energy requirements in thermophilic anaerobic sludge digestion. Renew. Energ. 28, 2255–2267 (2003). https://doi.org/10.1016/S0960-1481(03)00134-4

    Article  Google Scholar 

  28. 28.

    Salman, C.A., Schwede, S., Thorin, E., Yan, J.: Predictive modelling and simulation of integrated pyrolysis and anaerobic digestion process. Energy Proc. 105, 850–857 (2017). https://doi.org/10.1016/j.egypro.2017.03.400

    Article  Google Scholar 

  29. 29.

    Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., Zabaniotou, A.: A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl. Energy 148, 32–38 (2015). https://doi.org/10.1016/j.apenergy.2015.03.024

    Article  Google Scholar 

  30. 30.

    Titiladunayo, I.F., McDonald, A.G., Fapetu, O.P.: Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valori. 3, 311–318 (2012). https://doi.org/10.1007/s12649-012-9118-6

    Article  Google Scholar 

  31. 31.

    Abnisa, F., Arami-Niya, A., Daud, W.W., Sahu, J.N.: Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. BioEnerg. Res. 6, 830–840 (2013). https://doi.org/10.1007/s12155-013-9313-8

    Article  Google Scholar 

  32. 32.

    Mullen, C.A., Boateng, A.A.: Production and analysis of fast pyrolysis oils from proteinaceous biomass. BioEnerg. Res. 4, 303–311 (2011). https://doi.org/10.1007/s12155-011-9130-x

    Article  Google Scholar 

  33. 33.

    Lobato, A., Cuetos, M., Gómez, X., Morán, A.: Improvement of biogas production by co-digestion of swine manure and residual glycerine. Biofuels 1, 59–68 (2010). https://doi.org/10.4155/bfs.09.2

    Article  Google Scholar 

  34. 34.

    Chae, K.J., Jang, A., Yim, S.K., Kim, I.S.: The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99, 1–6 (2008). https://doi.org/10.1016/J.BIORTECH.2006.11.063

    Article  Google Scholar 

  35. 35.

    Cuetos, M.J., Fernández, C., Gómez, X., Morán, A.: Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 16, 1044–1052 (2011). https://doi.org/10.1007/s12257-011-0117-4

    Article  Google Scholar 

  36. 36.

    Angelidaki, I., Ellegaard, L.: Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl. Biochem. Biotechnol. 109, 95–106 (2003). https://doi.org/10.1385/ABAB:109:1-3:95

    Article  Google Scholar 

  37. 37.

    Sheng, C., Azevedo, J.L.T.: Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg. 28, 499–507 (2005). https://doi.org/10.1016/J.BIOMBIOE.2004.11.008

    Article  Google Scholar 

  38. 38.

    Gómez, X., Blanco, D., Lobato, A., Calleja, A., Martínez-Núñez, F., Martin-Villacorta, J.: Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1 H NMR. Biodegradation 22, 623–635 (2011). https://doi.org/10.1007/s10532-010-9436-y

    Article  Google Scholar 

  39. 39.

    Açıkalın, K.: Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J. Therm. Anal. Calorim. 109(1), 227–235 (2012). https://doi.org/10.1007/s10973-011-1714-3

    Article  Google Scholar 

  40. 40.

    Ceylan, S., Topçu, Y.: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol. 156, 182–188 (2014). https://doi.org/10.1016/J.BIORTECH.2014.01.040

    Article  Google Scholar 

  41. 41.

    Idris, S.S., Rahman, N.A., Ismail, K., Alias, A.B., Rashid, Z.A., Aris, M.J.: Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour. Technol. 101, 4584–4592 (2010). https://doi.org/10.1016/J.BIORTECH.2010.01.059

    Article  Google Scholar 

  42. 42.

    Jayaraman, K., Kok, M.V., Gokalp, I.: Combustion properties and kinetics of different biomass samples using TG–MS technique. J. Therm. Anal. Calorim. 127, 1361–1370 (2017). https://doi.org/10.1007/s10973-016-6042-1

    Article  Google Scholar 

  43. 43.

    Abdelouahed, L., Leveneur, S., Vernieres-Hassimi, L., Balland, L., Taouk, B.: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J. Therm. Anal. Calorim. 129, 1201–1213 (2017). https://doi.org/10.1007/s10973-017-6212-9

    Article  Google Scholar 

  44. 44.

    Otero, M., Sánchez, M.E., Gómez, X.: Co-firing of coal and manure biomass: a TG–MS approach. Bioresour. Technol. 102, 8304–8309 (2011). https://doi.org/10.1016/J.BIORTECH.2011.06.040

    Article  Google Scholar 

  45. 45.

    Zhang, Q., Chang, J., Wang, T., Xu, Y.: Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 48, 87–92 (2007). https://doi.org/10.1016/j.enconman.2006.05.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministry of Economy and Competition (Refs.: CTM2013-48697-C2-1-R and CTQ2015-68925-R) for financial support. J. González-Arias would like to thank the Junta de Castilla y León (Consejería de Educación) fellowship, Orden EDU/1100/2017, co-financed by the European Social Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Gómez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Arias, J., Fernández, C., Rosas, J.G. et al. Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass. Waste Biomass Valor 11, 6125–6137 (2020). https://doi.org/10.1007/s12649-019-00873-w

Download citation

Keywords

  • Anaerobic digestion
  • Pyrolysis
  • Energy recovery
  • Pig slurry
  • Kinetic analysis