Skip to main content
Log in

Effect of Antioxidants Extracted from Clove Wastes and Babul Tree Barks on the Oxidation Stability of Biodiesel made from Water Hyacinth of Lake Victoria Origin

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biodiesel from water hyacinth has shown to have poor oxidative stability due to the presence of significant amounts of unsaturated fatty acids. Most studies have been using synthetic antioxidants to improve oxidation stability of biodiesel but they are expensive and proved to be toxic at higher concentrations. This study assessed the possibility of using natural antioxidants extracted from clove wastes and babul tree barks since they are cheap, easy to extract and locally available and blends of these with synthetic antioxidant such as 1,2,3-trihydroxybenzene (Pyrogallol, PY) in improving the oxidation stability of biodiesel. Non-edible water hyacinth collected from Lake Victoria Tanzania was used as feedstock for biodiesel production. The biodiesel was analyzed for physicochemical properties and fatty acid composition. Most of the physicochemical properties were within the acceptable limits for ASTM D6751 and EN 14214 except for oxidation stability which recorded 2.4 h and was below limits. Fatty acid analysis showed the presence of unsaturated fatty acids at 42% which contributed to the poor oxidation stability of the biodiesel. Clove waste and babul barks displayed significant total phenolic contents of 220.0 ± 0.1 and 48.0 ± 0.2 mg GAE/g, respectively. Clove antioxidant displayed an improvement of 153% in oxidation stability at 1000 ppm while babul improved by 236% at 800 ppm. Blends of clove with PY displayed much higher improvements in oxidation stability by 398% at 800 ppm while babul with pyrogallol showed a general decrease in performance by 46%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Güereña, D., Neufeldt, H., Berazneva, J., Duby, S.: Water hyacinth control in Lake Victoria: transforming an ecological catastrophe into economic, social, and environmental benefits. Sustain. Prod. 3, 59–69 (2015). https://doi.org/10.1016/j.spc.2015.06.003

    Article  Google Scholar 

  2. Rezania, S., Ponraj, M., Din, M.F.M., Songip, A.R., Sairan, F.M., Chelliapan, S.: The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943–954 (2015). https://doi.org/10.1016/j.rser.2014.09.006

    Article  Google Scholar 

  3. Bhattacharya, A., Kumar, P.: Water hyacinth as a potential biofuel crop. Electron. J. Environ. Agric. Food Chem. 9(1), 112–122 (2010)

    Google Scholar 

  4. Poddar, K., Mandal, L., Banerjee, G.: Studies on water hyacinth(Eichhornia crassipes)- chemical composition of the plant and water from different habitats. Indian Vet. J. 68(9), 833–837 (1991)

    Google Scholar 

  5. Gunnarsson, C.C., Petersen, C.M.: Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag. 27(1), 117–129 (2007). https://doi.org/10.1016/j.wasman.2005.12.011

    Article  Google Scholar 

  6. Shanab, S.M., Hanafy, E.A., Shalaby, E.A.: Water hyacinth as non-edible source for biofuel production. Waste Biomass Valoriz. 9(2), 255–264 (2018). https://doi.org/10.1007/s12649-016-9816-6

    Article  Google Scholar 

  7. Tang, H., Wang, A., Salley, S.O., Ng, K.S.: The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 85(4), 373–382 (2008). https://doi.org/10.1007/s11746-008-1208-z

    Article  Google Scholar 

  8. Taghvaei, M., Jafari, S.M.: Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 52(3), 1272–1282 (2015). https://doi.org/10.1007/s13197-013-1080-1

    Article  Google Scholar 

  9. Bouaid, A., Martinez, M., Aracil, J.: Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study. Bioresour. Technol. 100(7), 2234–2239 (2009). https://doi.org/10.1016/j.biortech.2008.10.045

    Article  Google Scholar 

  10. Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16(8), 5924–5950 (2012). https://doi.org/10.1016/j.rser.2012.06.024

    Article  Google Scholar 

  11. Kivevele, T., Huan, Z.: Review of the stability of biodiesel produced from less common vegetable oils of African origin. S. Afr. J. Sci. 111(9–10), 01–07 (2015). https://doi.org/10.17159/SAJS.2015/20140434

    Article  Google Scholar 

  12. Varatharajan, K., Pushparani, D.: Screening of antioxidant additives for biodiesel fuels. Renew. Sustain. Energy Rev. 82, 2017–2028 (2018)

    Article  Google Scholar 

  13. Jain, S., Sharma, M.: Stability of biodiesel and its blends: a review. Renew. Sustain. Energy Rev.14(2), 667–678 (2010). https://doi.org/10.1016/j.rser.2009.10.011

    Article  Google Scholar 

  14. Brown, W., Johnson, A., O'Halloran, M.: The effect of the level of dietary fat on the toxicity of phenolic antioxidants. Aust. J. Exper. Biol. Med. Sci. 37(6), 533–547 (1959). https://doi.org/10.1038/icb.1959.56

    Article  Google Scholar 

  15. Johnson, A., Hewgill, F.: The effect of the antioxidants, butylated hydroxy anisole, butylated hydroxy toluene and propyl gallate on growth, liver and serum lipids and serum sodium levels of the rat. Aust. J. Exper. Biol. Med. Sci. 39(4), 353–360 (1961). https://doi.org/10.1038/icb.1961.34

    Article  Google Scholar 

  16. Feuer, G., Gaunt, I., Golberg, L., Fairweather, F.: Liver response tests. VI. Application to a comparative study of food antioxidants and hepatotoxic agents. Food Cosmet. Toxicol. 3, 457–469 (1965). https://doi.org/10.1016/S0015-6264(65)80132-8.

    Article  Google Scholar 

  17. Cha, Y.N., Bueding, E.: Effect of 2(3)-tert-butyl-4-hydroxyanisole administration on the activities of several hepatic microsomal and cytoplasmic enzymes in mice. Biochem. Pharmacol. 28(12), 1917–1921 (1979). https://doi.org/10.1016/0006-2952(79)90645-2

    Article  Google Scholar 

  18. Hansen, E.V., Meyer, O., Olsen, P.: Study on toxicity of butylated hydroxyanisole (BHA) in pregnant gilts and their foetuses. Toxicology 23(1), 79–83 (1982). https://doi.org/10.1016/0300-483X(82)90043-9

    Article  Google Scholar 

  19. Milner, S.M.: Effects of the food additive butylated hydroxytoluene on monolayer cultures of primate cells. Nature 216(5115), 557 (1967). https://doi.org/10.1038/216557a0

    Article  Google Scholar 

  20. Metcalfe, S.M.: Cell culture as a test system for toxicity. J. Pharm. Pharmacol. 23(11), 817–823 (1971)

    Article  Google Scholar 

  21. Sciorra, L., Kaufmann, B., Maier, R.: The effects of butylated hydroxytoluene on the cell cycle and chromosome morphology of phytohaemagglutinin-stimulated leucocyte cultures. Food Cosmet. Toxicol. 12(1), 33–44 (1974). https://doi.org/10.1016/0015-6264(74)90320-4

    Article  Google Scholar 

  22. Bruce, W.R., Heddle, J.A.: The mutagenic activity of 61 agents as determined by the micronucleus, Salmonella, and sperm abnormality assays. Can. J. Genet. Cytol. 21(3), 319–333 (1979). https://doi.org/10.1139/g79-036

    Article  Google Scholar 

  23. Degré, R., Saheb, S.A.: Butylated hydroxyanisole as a possible mutagenic agent. FEMS Microbiol. Lett. 14(3), 183–186 (1982). https://doi.org/10.1111/j.1574-6968.1982.tb08659.x

    Article  Google Scholar 

  24. Wilson, R., DeEds, F.: Feedstuffs antioxidants, toxicity studies on the antioxidant 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline. J. Agric. Food Chem. 7(3), 203–206 (1959). https://doi.org/10.1021/jf60097a008

    Article  Google Scholar 

  25. De Sousa, L.S., De Moura, C.V.R., De Oliveira, J.E., De Moura, E.M.: Use of natural antioxidants in soybean biodiesel. Fuel 134, 420–428 (2014). https://doi.org/10.1016/j.fuel.2014.06.007

    Article  Google Scholar 

  26. Cortés-Rojas, D.F., de Souza, C.R., Oliveira, W.P.: Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed. 4(2), 90–96 (2014)

    Article  Google Scholar 

  27. Jirovetz, L., Buchbauer, G., Stoilova, I., Stoyanova, A., Krastanov, A., Schmidt, E.: Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 54(17), 6303–6307 (2006). https://doi.org/10.1021/jf060608c

    Article  Google Scholar 

  28. Brewer, M.: Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10(4), 221–247 (2011). https://doi.org/10.1111/j.1541-4337.2011.00156.x

    Article  Google Scholar 

  29. Khabiruddin, M.: Compositional analysis and antioxidant activity of Acacia nilotica from two locations. Asian J. Chem. 29(4), 888–892 (2017)

    Article  Google Scholar 

  30. Singh, B.N., Singh, B.R., Sarma, B., Singh, H.: Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem. Biol. Interact. 181(1), 20–28 (2009). https://doi.org/10.1016/j.cbi.2009.05.007

    Article  Google Scholar 

  31. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959). https://doi.org/10.1139/y59-099

    Article  Google Scholar 

  32. Lee, K.G., Shibamoto, T.: Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem. 74(4), 443–448 (2001). https://doi.org/10.1016/S0308-8146(01)00161-3.

    Article  Google Scholar 

  33. Ismail, A., Marjan, Z.M., Foong, C.W.: Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 87(4), 581–586 (2004)

    Article  Google Scholar 

  34. Sultana, B., Anwar, F., Przybylski, R.: Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 104(3), 1106–1114 (2007). https://doi.org/10.1016/j.foodchem.2007.01.019.

    Article  Google Scholar 

  35. Nabora, C.S., Kingondu, C.K., Kivevele, T.T.: Tamarindus Indica fruit shell ash: a low cost and effective catalyst for biodiesel production from Parinari curatellifolia seeds oil. SN Appl. Sci. 1(3), 253 (2019). https://doi.org/10.1007/s42452-019-0256-3

    Article  Google Scholar 

  36. Arayana, G.L., Rao, K.S., Pantulu, A., Thyagarajan, G.J.A.B.: Composition of lipids in roots, stalks, leaves and flowers of Eichhornia crassipes (Mart.) Solms. Aquat. Bot. 20(3–4), 219–227 (1984).

    Article  Google Scholar 

  37. Meira, M., Quintella, C.M., dos Santos Tanajura, A., Da Silva, H.R.G., Fernando, J.D.E.S., da Costa Neto, P.R., Pepe, I.M., Santos, M.A., Nascimento, L.L.: Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta 85(1), 430–434 (2011). https://doi.org/10.1016/j.talanta.2011.04.002.

    Article  Google Scholar 

  38. Sukenik, A., Yamaguchi, Y., Livne, A.: Alterations in lipid molecular species of the marine eustigma tophyte Nannochlorosis Sp. 1. J. Phycol. 29(5), 620–626 (1993). https://doi.org/10.1111/j.0022-3646.1993.00620.x.

    Article  Google Scholar 

  39. Mashkor, I.: Evaluation of antioxidant activity of clove (Syzygium aromaticum). Int. J. Chem. Sci. 13, 23–30 (2015)

    Google Scholar 

  40. El-Maati, M.F.A., Mahgoub, S.A., Labib, S.M., Al-Gaby, A.M., Ramadan, M.F.: Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 8(4), 494–504 (2016). https://doi.org/10.1016/j.eujim.2016.02.006

    Article  Google Scholar 

  41. Atta, E.M., Mohamed, N.H., Abdelgawad, A.A.: Antioxidants: an overview on the natural and synthetic types. Eur. Chem. Bull. 6(8), 365–375 (2017). https://doi.org/10.17628/ecb.2017.6.374-384

    Article  Google Scholar 

  42. Nimse, S.B., Pal, D.: Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5(35), 27986–28006 (2015). https://doi.org/10.1039/C4RA13315C

    Article  Google Scholar 

  43. Spacino, K.R., da Silva, E.T., Angilelli, K.G., Moreira, I., Galão, O.F., Borsato, D.: Relative protection factor optimisation of natural antioxidants in biodiesel B100. Ind. Crops Prod. 80, 109–114 (2016). https://doi.org/10.1016/j.indcrop.2015.11.034

    Article  Google Scholar 

  44. Gregório, A.P.H., Borsato, D., Moreira, I., Silva, E.T., Romagnoli, É.S., Spacino, K.R.: Apparent activation energy and relative protection factor of natural antioxidants in mixture with biodiesel. Biofuels 10(5), 607–614 (2019). https://doi.org/10.1080/17597269.2017.1332297

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge The World Academy of Science (TWAS) for funding this study under Grant Number 17–495 RG/CHE/AF/AC_G – FR3240297727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas T. Kivevele.

Ethics declarations

Conflict of interest

We declare no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waweru, E.J., Pogrebnaya, T. & Kivevele, T.T. Effect of Antioxidants Extracted from Clove Wastes and Babul Tree Barks on the Oxidation Stability of Biodiesel made from Water Hyacinth of Lake Victoria Origin. Waste Biomass Valor 11, 5749–5758 (2020). https://doi.org/10.1007/s12649-019-00871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00871-y

Keywords

Navigation