Eco-Green Conversion of Watermelon Peels to Single Cell Oils Using a Unique Oleaginous Fungus: Lichtheimia corymbifera AH13

Abstract

Watermelon peel waste (WPW) is being used for first time in single cell oils (SCOs) production via a promising oleaginous fungus Lichtheimia corymbifera which was isolated from Egyptian ecosystem. Pretreatments of WPW were carried out by mechanical, physical and chemical methods; the most potent pretreatment was selected according to total reducing sugar and total lipid production. Accordingly, the mechanical ptetreatment of WPW was distinctly the best pretreatment method for SCOs production from L. corymbifera. Taguchi design clarified that the most optimal culture conditions were 35 °C and pH 7.0 for 4 days by which the highest potential of SCOs and lipid content was yielded (2.93 gl−1 and 39.56% respectively). Mechanical treatment revealed that the dominant fatty acid was palmitic and oleic acids with 41.98 and 34.65% respectively with appearance of γ linolenic acid (GLA) at low concentration 1.43%. Finally, this study showed that WPW was used as a natural, effective, economic, ecofriendly and integrated substrate without adding any outsource nutrients to produce sustainable SCOs with low cost production.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Esawy, M.A., et al.: Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydr. Polym. 86(2), 823–830 (2011)

    Google Scholar 

  2. 2.

    Badr, S.E., et al.: Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat. Prod. Res. 25(16), 1524–1539 (2011)

    Google Scholar 

  3. 3.

    Baenke, F., et al.: Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis. Models Mech. 6(6), 1353–1363 (2013)

    Google Scholar 

  4. 4.

    Puri, P., et al.: Contos 788 MJ and Sanyal AJ. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46(789): 1081–1090 (2007)

  5. 5.

    Gil, A.: Polyunsaturated fatty acids and inflammatory diseases. Biomed. Pharmacother. 56(8), 388–396 (2002)

    Google Scholar 

  6. 6.

    Tapiero, H., et al.: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56(5), 215–222 (2002)

    Google Scholar 

  7. 7.

    Dutta, A., Sharma-Walia, N.: Curbing lipids: impacts ON cancer and viral infection. Int. J. Mol. Sci. 20(3), 644 (2019)

    Google Scholar 

  8. 8.

    Na, J.W., Lee, J.-C., Kim, H.-W.: Biodiesel production from waste cooking grease: optimization and comparative productivity assessment. KSCE J. Civ. Eng. 23(3), 1000–1006 (2019)

    Google Scholar 

  9. 9.

    Qin, L., et al.: From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Biores. Technol. 245, 1507–1519 (2017)

    Google Scholar 

  10. 10.

    Ratledge, C., Wynn, J.P.: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–52 (2002)

    Google Scholar 

  11. 11.

    Liang, M.-H., Jiang, J.-G.: Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52(4), 395–408 (2013)

    Google Scholar 

  12. 12.

    Vivek, N., et al.: Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate–metabolic aspects, challenges and possibilities: an overview. Biores. Technol. 239, 507–517 (2017)

    Google Scholar 

  13. 13.

    Chiranjeevi, P., Mohan, S.: Optimizing the critical factors for lipid productivity during stress phased heterotrophic microalgae cultivation. Front. Energy Res. 4, 26 (2016)

    Google Scholar 

  14. 14.

    Enshaeieh, M., et al.: Recycling of lignocellulosic waste materials to produce high-value products: single cell oil and xylitol. Int. J. Environ. Sci. Technol. 12(3), 837–846 (2015)

    Google Scholar 

  15. 15.

    Wynn, J.P., et al.: Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10), 2857–2864 (2001)

    Google Scholar 

  16. 16.

    Zhang, Y., Adams, I.P., Ratledge, C.: Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(7), 2013–2025 (2007)

    Google Scholar 

  17. 17.

    Pinzi, S., et al.: Latest trends in feedstocks for biodiesel production. Biofuels Bioprod. Biorefin. 8(1), 126–143 (2014)

    Google Scholar 

  18. 18.

    Hasanin, M., et al.: Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties. Int. J. Biol. Macromol. 132, 963–969 (2019)

    Google Scholar 

  19. 19.

    Hasanin, M.S., et al.: Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatal. Agric. Biotechnol. 17, 160–167 (2019)

    Google Scholar 

  20. 20.

    Ibrahim, S., El Saied, H., Hasanin, M.: Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. J. King Saud Univ. Sci. (2018)

  21. 21.

    Youssef, A., et al.: Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 5(3), e01332 (2019)

    Google Scholar 

  22. 22.

    Gouda, M.K., Omar, S.H., Aouad, L.M.: Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24(9), 1703 (2008)

    Google Scholar 

  23. 23.

    Olkiewicz, M., et al.: Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng. 42, 634–643 (2012)

    Google Scholar 

  24. 24.

    Basta, A.H., et al.: Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. Int. J. Biol. Macromol. 107, 1364–1372 (2018)

    Google Scholar 

  25. 25.

    FAOSTAT. Food and agriculture organization of the United Nations. Statistics division. http://faostat3.fao.org/browse/Q/QC/E/2016. Accessed 2 Mar 2016

  26. 26.

    Tlili, I., et al.: Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J. Food Compos. Anal. 24(7), 923–928 (2011)

    Google Scholar 

  27. 27.

    Al-Sayed, H.M.A., Ahmed, A.R.: Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Ann. Agric. Sci. 58(1), 83–95 (2013)

    Google Scholar 

  28. 28.

    Huang, C., et al.: Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Biores. Technol. 100(19), 4535–4538 (2009)

    Google Scholar 

  29. 29.

    Fouda, A., et al.: Biodegradation and detoxification of bisphenol-A by filamentous fungi screened from nature. J. Adv. Biol. Biotechnol 2, 123–132 (2015)

    Google Scholar 

  30. 30.

    Folch, J., Lees, M., Stanley, G.S.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)

    Google Scholar 

  31. 31.

    Mamatha, S.: Polyunsaturated fatty acids (Pufas) OF MUCOR sp. with special reference to gamma linolenic acid (GLA). University of Mysore (2009)

  32. 32.

    Nisha, A., Muthukumar, S.P., Venkateswaran, G.: Safety evaluation of arachidonic acid rich Mortierella alpina biomass in albino rats—a subchronic study. Regul. Toxicol. Pharmacol. 53(3), 186–194 (2009)

    Google Scholar 

  33. 33.

    Suleiman, W., et al.: Recruitment of Cunninghamella echinulata as an Egyptian isolate to produce unsaturated fatty acids. Res. J. Pharm. Biol. Chem. Sci. 9(1), 764–774 (2018)

    Google Scholar 

  34. 34.

    Mishra, S.K., et al.: Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Biores. Technol. 155, 330–333 (2014)

    Google Scholar 

  35. 35.

    Khalil, A.M.A., Hashem, A.H.: Morphological changes of conidiogenesis in two aspergillus species. J. Pure Appl. Microbiol. 12(4), 2041–2049 (2018)

    Google Scholar 

  36. 36.

    Khalil, A.M.A., Hashem, A.H., Abdelaziz, A.M.: Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatal. Agric. Biotechnol. 101314 (2019)

  37. 37.

    Knyaz, C., et al.: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018)

    Google Scholar 

  38. 38.

    Abdelraof, M., Hasanin, M.S., El-Saied, H.: Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr. Polym. 211, 75–83 (2019)

    Google Scholar 

  39. 39.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Google Scholar 

  40. 40.

    Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Biores. Technol. 97(6), 841–846 (2006)

    Google Scholar 

  41. 41.

    Bellou, S., et al.: The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J. Biotechnol. 170, 50–59 (2014)

    Google Scholar 

  42. 42.

    Economou, C.N., et al.: Single cell oil production from rice hulls hydrolysate. Biores. Technol. 102(20), 9737–9742 (2011)

    Google Scholar 

  43. 43.

    Gardeli, C., et al.: Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J. Appl. Microbiol. 123(6), 1461–1477 (2017)

    Google Scholar 

  44. 44.

    Batrakov, S.G., et al.: Lipids of the zygomycete Absidia corymbifera F-965. Phytochemistry 65(9), 1239–1246 (2004)

    Google Scholar 

  45. 45.

    Dey, P., Banerjee, J., Maiti, M.K.: Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Biores. Technol. 102(10), 5815–5823 (2011)

    Google Scholar 

  46. 46.

    Nicol, R.W., Marchand, K., Lubitz, W.D.: Bioconversion of crude glycerol by fungi. Appl. Microbiol. Biotechnol. 93(5), 1865–1875 (2012)

    Google Scholar 

  47. 47.

    Chaturvedi, S., et al.: Banana peel waste management for single-cell oil production. Energy Ecol. Environ. 3(5), 296–303 (2018)

    Google Scholar 

  48. 48.

    Bandhu, S., et al.: Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology. SpringerPlus 3(1), 691 (2014)

    Google Scholar 

  49. 49.

    Shao, Y., et al.: 5-Hydroxymethylfurfural production from watermelon peel by microwave hydrothermal liquefaction. Energy 174, 198–205 (2019)

    Google Scholar 

  50. 50.

    Mohamed, S.A., et al.: Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J. Microbiol. 51(5), 605–611 (2013)

    Google Scholar 

  51. 51.

    Chaudhari, S.A., Singhal, R.S.: Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 79, 398–404 (2015)

    Google Scholar 

  52. 52.

    Papanikolaou, S., Aggelis, G.: Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur. J. Lipid Sci. Technol. 113(8), 1052–1073 (2011)

    Google Scholar 

  53. 53.

    Enshaeieh, M., Madani, M., Ghojavand, S.: Optimizing of lipid production in Cryptococcus heimaeyensis through M32 array of Taguchi design. Process Saf. Environ. Prot. 111, 757–765 (2017)

    Google Scholar 

  54. 54.

    Madani, M., Enshaeieh, M., Abdoli, A.: Single cell oil and its application for biodiesel production. Process Saf. Environ. Prot. 111, 747–756 (2017)

    Google Scholar 

  55. 55.

    Enshaeieh, M., Nahvi, I., Madani, M.: Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. Int. J. Environ. Sci. Technol. 11(3), 597–604 (2014)

    Google Scholar 

  56. 56.

    Subhash, G.V., Mohan, S.V.: Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 102(19), 9286–9290 (2011)

    Google Scholar 

  57. 57.

    Christophe, G., et al.: Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz. Arch. Biol. Technol. 55, 29–46 (2012)

    Google Scholar 

  58. 58.

    Hu, Q., et al.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4), 621–639 (2008)

    Google Scholar 

  59. 59.

    Athenaki, M., et al.: Lipids from yeasts and fungi: physiology, production and analytical considerations. J. Appl. Microbiol. 124(2), 336–367 (2018)

    Google Scholar 

  60. 60.

    Silveira, C.M.D., Oliveira, M.D.S., Furlong, E.B.: Conteúdo lipídico e perfil em ácidos graxos de farelos submetidos à fermentação por Aspergillus oryzae em estado Sólido (2010)

  61. 61.

    Fakas, S., et al.: γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Biores. Technol. 99(13), 5986–5990 (2008)

    Google Scholar 

  62. 62.

    Li, Y., et al.: Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15. J. Mol. Catal. B 56(2), 96–101 (2009)

    Google Scholar 

  63. 63.

    Gupta, A., et al.: Molecular identification of marine yeast and its spectroscopic analysis establishes unsaturated fatty acid accumulation. J. Biosci. Bioeng. 114(4), 411–417 (2012)

    Google Scholar 

  64. 64.

    Wolfe, K., et al.: Superstars: assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Pollut. Bull. 116(1), 307–314 (2017)

    Google Scholar 

  65. 65.

    Jakobsson, A., Westerberg, R., Jacobsson, A.: Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45(3), 237–249 (2006)

    Google Scholar 

  66. 66.

    Naganuma, T., et al.: Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 585(20), 3337–3341 (2011)

    Google Scholar 

  67. 67.

    Ochsenreither, K., et al.: Production strategies and applications of microbial single cell oils. Front. Microbiol. 7, 1539 (2016)

    Google Scholar 

  68. 68.

    Chatzifragkou, A., et al.: Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2), 1097–1108 (2011)

    Google Scholar 

  69. 69.

    Ruan, Z., et al.: Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Biores. Technol. 110, 198–205 (2012)

    Google Scholar 

  70. 70.

    Papanikolaou, S., et al.: Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur. J. Lipid Sci. Technol. 109(11), 1060–1070 (2007)

    Google Scholar 

  71. 71.

    Zeng, J., et al.: Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Biores. Technol. 128, 385–391 (2013)

    Google Scholar 

  72. 72.

    Abu, O., et al.: Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Biores. Technol. 72(2), 189–192 (2000)

    Google Scholar 

  73. 73.

    Economou, C.N., et al.: Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Biores. Technol. 101(4), 1385–1388 (2010)

    Google Scholar 

  74. 74.

    Enshaeieh, M., et al.: Selection and optimization of single cell oil production from Rodotorula 110 using environmental waste as substrate. J. Cell Mol. Res. 4(2), 68–75 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Faculty of science (Boyes), Al-Azhar University, Cairo, Egypt for providing the necessary research facilities. The authors would like to acknowledge the facilities available at National Research Centre of Egypt.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sayed Hasanin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hashem, A.H., Hasanin, M.S., Khalil, A.M.A. et al. Eco-Green Conversion of Watermelon Peels to Single Cell Oils Using a Unique Oleaginous Fungus: Lichtheimia corymbifera AH13. Waste Biomass Valor 11, 5721–5732 (2020). https://doi.org/10.1007/s12649-019-00850-3

Download citation

Keywords

  • Watermelon peels waste
  • Single cell oils
  • Taguchi design