Enzymatic and Hydrothermal Pretreatment of Newly Isolated Spirulina subsalsa BGLR6 Biomass for Enhanced Biogas Production

Abstract

The complex structure and biochemical composition of the cell wall of microalgae impede their anaerobic digestion. To enhance the microalgae anaerobic biodegradability, various pretreatment approaches have been utilized. In this study, the enzyme and hydrothermal pretreatment methods were evaluated for microalgal biomass pretreatment and biogas yield. The optical and scanning electron microscopy along with Fourier transform infrared spectroscopy analysis confirmed the efficient action of both the pretreatment methods. The hydrothermal pretreatment resulted in more structural changes, though the increase in enzymatic concentration was also found to have a pronounced effect on both structural and chemical changes. The FTIR spectra determined that mostly the protein and carbohydrate structures of the microalgal cells were affected. Further upon quantitative analysis, it was observed that 10% dose (w/w) for 24 h of exposure time released significantly more soluble chemical oxygen demand compared to others. The multi-enzyme 10% dose for 24 h resulted in significantly higher biogas production potential (P) of 768.92 mL g−1 VS at a maximum biogas production rate (Rm) of 32.16 mL g−1 d−1 with a very short lag phase (λ) of 0.09 days at the end of 30 days, in comparison to untreated and other pretretment conditions in this study. Both the pretreatment approaches in the present study enhanced the microalgal biomass disintegration, digestibility and biogas production. However, more research is required to optimize the process parameters of these pretreatment approaches to make them more reasonable and applicable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Prajapati, S.K., Kaushik, P., Malik, A., Vijay, V.K.: Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol. Adv. 31, 1408–1425 (2013). https://doi.org/10.1016/j.biotechadv.2013.06.005

    Article  Google Scholar 

  2. 2.

    Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Prog. 24, 815–820 (2008). https://doi.org/10.1021/bp070371k

    Article  Google Scholar 

  3. 3.

    Wiley, P.E., Campbell, J.E., McKuin, B.: Production of biodiesel and biogas from algae: a review of process train options. Water Environ. Res. 83, 326–338 (2011)

    Article  Google Scholar 

  4. 4.

    Park, J.B.K., Craggs, R.J., Shilton, A.N.: Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102, 35–42 (2011). https://doi.org/10.1016/j.biortech.2010.06.158

    Article  Google Scholar 

  5. 5.

    Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Pinoy, L.J.J., Muylaert, K.: Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol. Bioeng. 108, 2320–2329 (2011). https://doi.org/10.1002/bit.23199

    Article  Google Scholar 

  6. 6.

    Sialve, B., Bernet, N., Bernard, O.: Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27, 409–416 (2009). https://doi.org/10.1016/j.biotechadv.2009.03.001

    Article  Google Scholar 

  7. 7.

    Bohutskyi, P., Kula, T., Kessler, B.A., Hong, Y., Bouwer, E.J., Betenbaugh, M.J., Allnutt, F.C.T.: Mixed trophic state production process for microalgal biomass with high lipid content for generating biodiesel and biogas. BioEnergy Res. 7, 1174–1185 (2014). https://doi.org/10.1007/s12155-014-9453-5

    Article  Google Scholar 

  8. 8.

    Bohutskyi, P., Chow, S., Ketter, B., Betenbaugh, M.J., Bouwer, E.J.: Prospects for methane production and nutrient recycling from lipid extracted residues and whole nannochloropsis salina using anaerobic digestion. Appl. Energy 154, 718–731 (2015). https://doi.org/10.1016/J.APENERGY.2015.05.069

    Article  Google Scholar 

  9. 9.

    Alzate, M.E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira, S.I.: Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123, 488–494 (2012)

    Article  Google Scholar 

  10. 10.

    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40, 105–111 (2012). https://doi.org/10.1016/j.biombioe.2012.02.008

    Article  Google Scholar 

  11. 11.

    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 110, 610–616 (2012). https://doi.org/10.1016/j.biortech.2012.01.043

    Article  Google Scholar 

  12. 12.

    Markou, G., Angelidaki, I., Georgakakis, D.: Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111, 872–879 (2013). https://doi.org/10.1016/J.FUEL.2013.04.013

    Article  Google Scholar 

  13. 13.

    Angelidaki, I., Sanders, W.: Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Bio/Technology. 3, 117–129 (2004). https://doi.org/10.1007/s11157-004-2502-3

    Article  Google Scholar 

  14. 14.

    Magdalena, J., Ballesteros, M., González-Fernandez, C.: Efficient anaerobic digestion of microalgae biomass: proteins as a key macromolecule. Molecules 23, 1098 (2018). https://doi.org/10.3390/molecules23051098

    Article  Google Scholar 

  15. 15.

    Ward, A.J., Lewis, D.M., Green, F.B.: Anaerobic digestion of algae biomass: a review. Algal Res. 5, 204–214 (2014). https://doi.org/10.1016/J.ALGAL.2014.02.001

    Article  Google Scholar 

  16. 16.

    Bohutskyi, P., Bouwer, E.: Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee, J.W. (ed.) Advanced Biofuels and Bioproducts, pp. 873–975. Springer, New York (2013)

    Google Scholar 

  17. 17.

    Inglesby, A.E., Griffiths, M.J., Harrison, S.T.L., van Hille, R.P.: Anaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment. J. Appl. Phycol. 27, 1891–1900 (2015). https://doi.org/10.1007/s10811-015-0669-3

    Article  Google Scholar 

  18. 18.

    Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150, 51–56 (2010). https://doi.org/10.1016/j.jbiotec.2010.07.030

    Article  Google Scholar 

  19. 19.

    Van Eykelenburg, C.: On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie Van Leeuwenhoek 43, 89–99 (1977). https://doi.org/10.1007/BF00395664

    Article  Google Scholar 

  20. 20.

    Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., Villa, R.: Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 65, 350–361 (2014). https://doi.org/10.1016/J.WATRES.2014.07.040

    Article  Google Scholar 

  21. 21.

    Miao, H., Lu, M., Zhao, M., Huang, Z., Ren, H., Yan, Q., Ruan, W.: Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage. Bioresour. Technol. 149, 359–366 (2013). https://doi.org/10.1016/J.BIORTECH.2013.09.071

    Article  Google Scholar 

  22. 22.

    Passos, F., Ferrer, I.: Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 48, 7171–7178 (2014). https://doi.org/10.1021/es500982v

    Article  Google Scholar 

  23. 23.

    Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Bioresour. Technol. 172, 403–412 (2014)

    Article  Google Scholar 

  24. 24.

    Chen, P.H., Oswald, W.J.: Thermochemical treatment for algal fermentation. Environ. Int. 24, 889–897 (1998). https://doi.org/10.1016/S0160-4120(98)00080-4

    Article  Google Scholar 

  25. 25.

    Gonzalez-Fernandez, C., Sialve, B., Molinuevo-Salces, B.: Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour. Technol. 198, 896–906 (2015). https://doi.org/10.1016/J.BIORTECH.2015.09.095

    Article  Google Scholar 

  26. 26.

    Mahdy, A., Ballesteros, M., González-Fernández, C.: Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour. Technol. 199, 319–325 (2016). https://doi.org/10.1016/J.BIORTECH.2015.08.080

    Article  Google Scholar 

  27. 27.

    Mishra, V., Dubey, A., Prajapti, S.K.: Algal biomass pretreatment for improved biofuel production. In: Gupta, S.K., Malik, A., Bux, F. (eds.) Algal Biofuels, pp. 259–280. Springer, Cham (2017)

    Google Scholar 

  28. 28.

    Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J., Xu, C.: Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol. 53, 1380–1390 (2012). https://doi.org/10.1093/pcp/pcs082

    Article  Google Scholar 

  29. 29.

    Monlau, F., Barakat, A., Steyer, J.P., Carrere, H.: Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 120, 241–247 (2012). https://doi.org/10.1016/j.biortech.2012.06.040

    Article  Google Scholar 

  30. 30.

    Salehian, P., Karimi, K., Zilouei, H., Jeihanipour, A.: Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106, 484–489 (2013). https://doi.org/10.1016/J.FUEL.2012.12.092

    Article  Google Scholar 

  31. 31.

    Dar, R.A., Arora, M., Phutela, U.G.: Optimization of cultural factors of newly isolated microalga Spirulina subsalsa and its co-digestion with paddy straw for enhanced biogas production. Bioresour. Technol. Reports. 5, 185–198 (2019). https://doi.org/10.1016/J.BITEB.2019.01.009

    Article  Google Scholar 

  32. 32.

    Lembi, C.A., Waaland, J.R.: Phycological Society of America.: Algae and Human Affairs. Cambridge University Press, New York (1988)

    Google Scholar 

  33. 33.

    Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Franson, M.A.H., American Public Health Association, American Water Works Association, Water Environment Federation: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (1998)

    Google Scholar 

  34. 34.

    Prajapati, S.K., Bhattacharya, A., Malik, A., Vijay, V.K.: Pretreatment of algal biomass using fungal crude enzymes. Algal Res. 8, 8–14 (2015). https://doi.org/10.1016/J.ALGAL.2014.12.011

    Article  Google Scholar 

  35. 35.

    Bozzola, J.J., Russell, L.D.: Electron Microscopy: Principles and Techniques for Biologists. Jones and Bartlett, Burlington (1999)

    Google Scholar 

  36. 36.

    AOAC: Official Methods of Analysis. AOAC International, Rockville (2012)

    Google Scholar 

  37. 37.

    Prajapati, S.K., Malik, A., Vijay, V.K., Sreekrishnan, T.R.: Enhanced methane production from algal biomass through short duration enzymatic pretreatment and codigestion with carbon rich waste. RSC Adv. 5, 67175–67183 (2015). https://doi.org/10.1039/C5RA12670C

    Article  Google Scholar 

  38. 38.

    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009). https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  39. 39.

    Gerken, H.G., Donohoe, B., Knoshaug, E.P.: Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237, 239–253 (2013). https://doi.org/10.1007/s00425-012-1765-0

    Article  Google Scholar 

  40. 40.

    Schwede, S., Rehman, Z.-U., Gerber, M., Theiss, C., Span, R.: Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour. Technol. 143, 505–511 (2013). https://doi.org/10.1016/j.biortech.2013.06.043

    Article  Google Scholar 

  41. 41.

    Samson, R., Leduy, A.: Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Lett. 5, 671–676 (1983). https://doi.org/10.1007/BF01386360

    Article  Google Scholar 

  42. 42.

    Ciferri, O.: Spirulina, the edible microorganism. Microbiol. Rev. 47, 551–578 (1983)

    Article  Google Scholar 

  43. 43.

    Bohutskyi, P., Betenbaugh, M.J., Bouwer, E.J.: The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol. 155, 366–372 (2014). https://doi.org/10.1016/J.BIORTECH.2013.12.095

    Article  Google Scholar 

  44. 44.

    Ramos, Ó.L., Reinas, I., Silva, S.I., Fernandes, J.C., Cerqueira, M.A., Pereira, R.N., Vicente, A.A., Poças, M.F., Pintado, M.E., Malcata, F.X.: Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 30, 110–122 (2013). https://doi.org/10.1016/j.foodhyd.2012.05.001

    Article  Google Scholar 

  45. 45.

    Duygu, D.Y.: Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotechnol. 11, 3817–3824 (2012). https://doi.org/10.5897/ajb11.1863

    Article  Google Scholar 

  46. 46.

    Murdock, J.N., Wetzel, D.L.: FT-IR microspectroscopy enhances biological and ecological analysis of algae. Appl. Spectrosc. Rev. 44, 335–361 (2009). https://doi.org/10.1080/05704920902907440

    Article  Google Scholar 

  47. 47.

    Movasaghi, Z., Rehman, S., ur Rehman, D.I.: Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008). https://doi.org/10.1080/05704920701829043

    Article  Google Scholar 

  48. 48.

    Benning, L., Phoenix, V., Yee, N., Cosmochimica, M.T.-G., et al.: Undefined: Molecular Characterization of Cyanobacterial Silicification Using Synchrotron Infrared Micro-spectroscopy. Elsevier, Amsterdam (2004)

    Google Scholar 

  49. 49.

    Sigee, D.C., Dean, A., Levado, E., Tobin, M.J.: Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from a eutrophic lake. Eur. J. Phycol. 37, S0967026201003444 (2002). https://doi.org/10.1017/S0967026201003444

    Article  Google Scholar 

  50. 50.

    Coates, J.: Interpretation of infrared spectra, a practical approach. In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry. Wiley, Chichester (2006)

    Google Scholar 

  51. 51.

    Liu, H.J., Xu, C.H., Zhou, Q., Wang, F., Li, W.M., Ha, Y.M., Sun, S.Q.: Analysis and identification of irradiated Spirulina powder by a three-step infrared macro-fingerprint spectroscopy. Radiat. Phys. Chem. 85, 210–217 (2013). https://doi.org/10.1016/J.RADPHYSCHEM.2012.12.001

    Article  Google Scholar 

  52. 52.

    Ramirez, F.J., Luque, P., Heredia, A., Bukovac, M.J.: Fourier transform IR study of enzymatically isolated tomato fruit cuticular membrane. Biopolymers 32, 1425–1429 (1992). https://doi.org/10.1002/bip.360321102

    Article  Google Scholar 

  53. 53.

    Dogan, A., Siyakus, G., Severcan, F.: FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chem. 100, 1106–1114 (2007). https://doi.org/10.1016/j.foodchem.2005.11.017

    Article  Google Scholar 

  54. 54.

    Stehfest, K., Toepel, J., Wilhelm, C.: The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 43, 717–726 (2005). https://doi.org/10.1016/J.PLAPHY.2005.07.001

    Article  Google Scholar 

  55. 55.

    Ehimen, E.A., Holm-Nielsen, J.-B., Poulsen, M., Boelsmand, J.E.: Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew. Energy 50, 476–480 (2013). https://doi.org/10.1016/J.RENENE.2012.06.064

    Article  Google Scholar 

  56. 56.

    Passos, F., Hom-Diaz, A., Blanquez, P., Vicent, T., Ferrer, I.: Improving biogas production from microalgae by enzymatic pretreatment. Bioresour. Technol. 199, 347–351 (2016). https://doi.org/10.1016/J.BIORTECH.2015.08.084

    Article  Google Scholar 

  57. 57.

    Hom-Diaz, A., Passos, F., Ferrer, I., Vicent, T., Blánquez, P.: Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Res. 19, 184–188 (2016). https://doi.org/10.1016/J.ALGAL.2016.08.006

    Article  Google Scholar 

  58. 58.

    Mendez, L., Mahdy, A., Demuez, M., Ballesteros, M., González-Fernández, C.: Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: organic matter solubilisation and biochemical methane potential. Fuel 117, 674–679 (2014). https://doi.org/10.1016/J.FUEL.2013.09.032

    Article  Google Scholar 

  59. 59.

    Passos, F., Ferrer, I.: Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res. 68, 364–373 (2015). https://doi.org/10.1016/J.WATRES.2014.10.015

    Article  Google Scholar 

  60. 60.

    Shanmugam, P., Horan, N.J.: Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 100, 4117–4120 (2009). https://doi.org/10.1016/j.biortech.2009.03.052

    Article  Google Scholar 

  61. 61.

    Shanmugam, P., Horan, N.J.: Simple and rapid methods to evaluate methane potential and biomass yield for a range of mixed solid wastes. Bioresour. Technol. 100, 471–474 (2009). https://doi.org/10.1016/j.biortech.2008.06.027

    Article  Google Scholar 

  62. 62.

    Sung, S., Liu, T.: Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53, 43–52 (2003). https://doi.org/10.1016/S0045-6535(03)00434-X

    Article  Google Scholar 

  63. 63.

    Cuetos, M.J., Fernández, C., Gómez, X., Morán, A.: Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 16, 1044–1052 (2011). https://doi.org/10.1007/s12257-011-0117-4

    Article  Google Scholar 

Download references

Acknowledgements

The author RAD greatly acknowledges the Indian Council of Medical Research (ICMR), New Delhi for providing support in the form of Junior Research Fellowship under Grant No. 3/1/3/JRF-2015 (2)/HRD. The authors also thankfully acknowledge the financial support provided by Indian Council of Agricultural Research (ICAR) for pursuing the All India Coordinated Research Project (AICRP) on Renewable Sources of Energy for Agriculture Agro-based Industries.

Author information

Affiliations

Authors

Contributions

RAD, UGP designed the experiments. RAD carried out the experimental work. RAD analyzed the data and wrote the manuscript. UGP thoroughly revised and approved the final manuscript.

Corresponding author

Correspondence to Rouf Ahmad Dar.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dar, R.A., Phutela, U.G. Enzymatic and Hydrothermal Pretreatment of Newly Isolated Spirulina subsalsa BGLR6 Biomass for Enhanced Biogas Production. Waste Biomass Valor 11, 3639–3651 (2020). https://doi.org/10.1007/s12649-019-00712-y

Download citation

Keywords

  • Anaerobic digestion
  • Biodegradability
  • Enzymatic pretreatment
  • Hydrothermal pretreatment
  • FTIR
  • Biogas production