Transformation of Lignocellulosic Biomass to Cellulose-Based Hydrogel and Agriglass to Improve Beans Yield


Rice straw, as a lignocellulosic biomass, was used for the preparation of both friendly environmental hydrophilic polymer, i.e. hydrogel, and agriglass, for fertilizer, to improve the yield of beans in sandy soil. The hydrogel was used as slow release water, while the glass fertilizer was used to release the phosphorus and potassium, those present in the agriglass, to be used by the plant roots as a slow release fertilizer. A field experiment was carried out at Ismailia Governorate, Egypt to study the effect of hydrogel (H), agriglass (G), effective microorganisms (M) and mixtures of them, namely HG, HM, GM and HGM, on faba bean production and their ability to ameliorating salinity stress (soil EC = 6 dS m−1) under different irrigation levels (I1 = 100 I2 = 85 I3 = 75% of calculated water requirements). Statistical analysis indicates a significant effect of irrigation levels and all amendments on bean growth parameters, i.e. seed yield, seed nutrient content, irrigation water use efficiency and economic water productivity. Bean seeds yield (ton fed−1) was increased as follows: HGM > HG > GM > HM > M > H > G > control.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Abedi-Koupai, J., Sohrab, F., Swarbrick, G.: Evaluation of hydrogel application on soil water retention characteristics. J. Plant Nutr. 31, 317–331 (2008)

    Article  Google Scholar 

  2. 2.

    Abou-Baker, N.H., Abd-Eladl, M., Abbas, M.M.: Use of silicate and different cultivation practices in alleviating salt stress effect on bean plants, p. 5. Aust. J. Basic Appl., Sci (2011)

    Google Scholar 

  3. 3.

    Abou-Baker, N.H., Abd-Eladl, M., Eid, T.A.: Silicon and water regime responses in bean production under soil saline condition. J. Appl. Sci. Res. 8, 5698–5707 (2012)

    Google Scholar 

  4. 4.

    Abou-Baker, N.H., Ibrahim, E.A., Abd-Eladl, M.M.: Biozeolite for improving bean production under abiotic stress conditions. Bull. Transilvania Univers. Brasov For. Wood Ind. Agric. Food Eng. Ser. II 10, 31–46 (2017)

    Google Scholar 

  5. 5.

    Abou-Baker, N.H., Ouis, M., Abd-Eladl, M.: Appraisal of agriglass in promoting maize production under abiotic stress conditions. Silicon 10, 1841–1849 (2018).

    Article  Google Scholar 

  6. 6.

    Abou-Baker, N.H., El-Dardiry, E.A.: Integrated Management of Salt Affected Soils in Agriculture: Incorporation of Soil Salinity Control Methods. Academic Press, Cambridge (2015)

    Google Scholar 

  7. 7.

    Ahmed, S.A., Mostafa, F.A., Ouis, M.A.: Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support. Int. J. Biol. Macromol. 112, 371–382 (2018)

    Article  Google Scholar 

  8. 8.

    Ali, L.: Significance of applied cellulose polymer and organic manure for ameliorating hydro-physico-chemical properties of sandy soil and maize yield. Aust. J. Basic Appl. Sci. 5, 23–35 (2011)

    Google Scholar 

  9. 9.

    Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300, D05109 (1998)

  10. 10.

    Araya, A., Solomon, H. Mitiku, H. Sisay, F. Tadesse, D.: Determination of local barley (HordeumVulgare L.) crop coefficient and comparative assessment of water productivity for crops grown under the present pond water in Tigray, Northern Ethiopia. CNCS, Mekelle University, 3, 65–79 (2011)

  11. 11.

    Azooz, M., ElBatal, H., ElBadry, K.M., AbdElMoneim, M., ElAshry, S.: Preparation and application of some phosphoborosilicate glasses containing micronutrients as plant fertilisers. Glass Technol. Eur. J. Glass Sci. Technol. Part A 47, 164–166 (2006)

    Google Scholar 

  12. 12.

    Bao, Y., Ma, J., Li, N.: Synthesis and Swelling behaviors of Sodium Carboxymethyl Cellulose-g-poly (AA-co-AM-co-AMPS)/MMT Superabsorbent hydrogel. J. Carbohydr. Polym. 84, 76–82 (2011)

    Article  Google Scholar 

  13. 13.

    Chakraborty, I.N., Condrate, R.A.: The vibrational spectra of glasses in the Na2O–SiO2–P2O5 system with a 1: 1 SiO2: P2O5 molar ratio. Phys. Chem. Glasses 26, 68–73 (1985)

    Google Scholar 

  14. 14.

    Cheng, B., Pei, B., Wang, Z., Hu, Q.: Advances in chitosan-based superabsorbent hydrogels. RSC Adv. 7, 42036–42046 (2017)

    Article  Google Scholar 

  15. 15.

    Cottenie, A., Verloo, M., Kiekens, L., Velghe, G., Camerlynch, R.: Chemical Analysis of Plants and Soils. Laboratory of Analytical and Agro, Chemistry State University, Ghent (1982)

    Google Scholar 

  16. 16.

    Daly, M., Stewart, D.: Influence of “effective microorganisms”(EM) on vegetable production and carbon mineralization–a preliminary investigation. J. Sustain. Agric. 14, 15–25 (1999)

    Article  Google Scholar 

  17. 17.

    Demitri, C., Scalera, F., Madaghiele, M., Sannino, A., Maffezzoli, A.: Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 6, Article ID 435073 (2013)

  18. 18.

    Egamberdiyeva, D., Höflich, G.: Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J. Arid Environ. 56, 293–301 (2004)

    Article  Google Scholar 

  19. 19.

    Ekebafe, L., Idiaghe, J., Ekebafe, M.: Effect of delignified Native Bamboo (Bambusa vulgaris) cellulosic–g-poly (acrylonitrile) hydrogel on the growth indices of okra (Abelmoschusesculentus) seedlings. Casp. J. Appl. Sci. Res. 2, 67–75 (2013)

    Google Scholar 

  20. 20.

    ElBatal, F., Hamdy, Y., Marzouk, S.: UV–visible and infrared absorption spectra of transition metals-doped lead phosphate glasses and the effect of gamma irradiation. J. Non-Cryst. Solids 355, 2439–2447 (2009)

    Article  Google Scholar 

  21. 21.

    El-Hady, O., Abou-Sedera, S.: The conditioning effect of composts (natural) or/and acrylamide hydrogels (synthesized) on a sandy calcareous soil. II. Chemical and biological properties of the soil. Egypt J. Soil Sci. 43, 538–546 (2006)

    Google Scholar 

  22. 22.

    Erizal, E., Perkasa, D.P., Abbas, B., Sudirman, S., Sulistioso, G.S.: Fast swelling superabsorbent hydrogels starch based prepared by gamma radiation techniques. Indo. J. Chem. 14(3), 246–252 (2014)

    Article  Google Scholar 

  23. 23.

    FAO.: Waste water treatments and use in agriculture. In: Irrigation and Drainage, vol. 47, p. 125 (1992)

  24. 24.

    Gomez, A.A., Gomez, K.A.: Statistical Procedures for Agricultural Research. Wiley, New York (1984)

    Google Scholar 

  25. 25.

    Gürdağ, G., Sarmad, S.: Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia, S., Sabaa, M.W. (eds.) Polysaccharide Based Graft Copolymers, Chapter 2, pp. 15–57. Springer, Berlin (2013)

    Google Scholar 

  26. 26.

    Hazra, G.: Different types of eco-friendly fertilizers: an overview. Sustain. Environ. 1, 54 (2016)

    Article  Google Scholar 

  27. 27.

    Hazra, G., Das, T.: A review on controlled release advanced glassy fertilizer. Glob. J. Sci. Front. Res. B Chem. 14, 33–44 (2014)

    Google Scholar 

  28. 28.

    Hussein, M.M., El-Saady, A.M., Abou-Baker, N.H.: Castor bean plants response to phosphorus sources under irrigation by diluted seawater. Int. J. ChemTech. Res. 8, 261–271 (2015)

    Google Scholar 

  29. 29.

    Ibrahim, M.M., Abd-Eladl, M., Abou-Baker, N.H.: Lignocellulosic biomass for the preparation of cellulose-based hydrogel and its use for optimizing water resources in agriculture. J. Appl. Polym. Sci. (2015).

    Article  Google Scholar 

  30. 30.

    Ibrahim, M.M., Fahmy, T.Y., Mobarak, F., Salaheldin, E.I., Youssef, M.A., Mabrook, M.R.: Carboxymethyl and carbanilated cellulose modified with tosyl and trimethylsilyl groups: preparation, characterization, and applications in controlled release of anti-acid drugs. J. Am. Sci. 12, 108–123 (2014)

    Google Scholar 

  31. 31.

    Kant, A.C., Turan, M.: Hydrogel substrate alleviates salt stress with increase antioxidant enzymes activity of bean (Phaseolus vulgaris L.) under salinity stress. Afr. J. Agric. Res. 6, 715–724 (2011)

    Google Scholar 

  32. 32.

    Karapetian, K., Dzhevaga, N.: Improvement of ecological conditions of water areas adjacent to the land used in agricultural activities through the use of new types of glassy phosphate fertilizers. Int. J. Appl. Eng. Res. 11, 5614–5618 (2016)

    Google Scholar 

  33. 33.

    Klinpituksa, P., Kosaiyakanon, P.: Superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization. Int. J. Polym. Sci. (2017).

    Article  Google Scholar 

  34. 34.

    Klute, A.: Methods of Soil Analysis: Part I: Physical and Mineralogical Methods, 2nd edn. American Society of Agronomy, Monograph No. 9, Madison, Wisconsin. USA 1986

  35. 35.

    Koupai, J.A., Eslamian, S.S., Kazemi, J.A.: Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrogel. Hydrobiol. 8, 67–75 (2008)

    Article  Google Scholar 

  36. 36.

    Liu, M., Liang, R., Zhen, F., Liu, Z., Niu, A.: Preparation of Superabsorbent Slow release nitrogen fertilizer by inverse suspension polymerization. Polym. Int. 56, 729–737 (2007)

    Article  Google Scholar 

  37. 37.

    Lobo, D., Torres, D., Gabriels, D., Rodríguez, N., Rivero, D.: Effect of organic waste compost and a water absorbent polymeric soil conditioner (hydrogel) on the water use efficiency in a Capsicum annum (green pepper) cultivation. Proc. Agro Environ. 454, 453–459 (2006)‏

    Google Scholar 

  38. 38.

    Mansour, O.Y., Nagaty, A.: Grafting of synthetic polymers to natural polymers by chemical processes. Prog. Poly. Sci. 11, 91–165 (1985)

    Article  Google Scholar 

  39. 39.

    Meena, V.S., Meena, S.K., Verma, J.P., Kumar, A., Aeron, A., Mishra, P.K., Bisht, J.K., Pattanayak, A., Naveed, M., Dotaniya, M.L.: Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol. Eng. 107, 8–32 (2017)

    Article  Google Scholar 

  40. 40.

    Mohana, R.K., Padmanabha, R.M.: Synthesis of novel super absorbing Copolymers for agricultural and horticultural application. Polym. Int. 50, 946 (2001)

    Article  Google Scholar 

  41. 41.

    Mohana, R.K., Padmanabha, R.M., Murali, Mohan Y.: Synthesis of Superabsorbent copolymers as water manageable material. Polym. Int. J. 52, 7668 (2003)

    Google Scholar 

  42. 42.

    Mukhtar, S., Shahid, I., Mehnaz, S., Malik, K.A.: Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticumaestivum L.). Microbiol. Res. 205, 107–117 (2017)

    Article  Google Scholar 

  43. 43.

    Ranjha, N.M., Qureshi, U.F.: Preparation and characterization of cross linked acrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int. J. Pharm. Pharm. Sci. 6, 400–410 (2014)

    Google Scholar 

  44. 44.

    Ouis, M.A., ElBatal, H.A., Abdelghany, A.M., Hammad, A.H.: Structural and optical properties of CuO in zinc phosphate glasses and effects of gamma irradiation. J. Mol. Struct. 1103, 224–231 (2016)

    Article  Google Scholar 

  45. 45.

    Ouis, M.A., Abd-Eladl, M., Abou-Baker, N.H.: Evaluation of agriglass as an environment friendly slow release fertilizer. Silicon 10, 293–299 (2018).

    Article  Google Scholar 

  46. 46.

    Ouis, M.A., Azooz, H.A., ElBatal, H.A.: Optical and infrared spectral investigations of cadmium zinc phosphate glasses doped with WO3 or MoO3 before and after subjecting to gamma irradiation. J. Non-Cryst. Solids 494, 31–39 (2018)

    Article  Google Scholar 

  47. 47.

    Page, A.L., Miller, R.H., Keeny, D.R.: Methods of Soil Analysis, Part II Chemical and Microbiological Properties, 2nd edn. American Society of Agronomy. Monograph No. 9, Madison, Wisconsin, USA (1982)

  48. 48.

    Peng, X.-W., Ren, J.-L., Zhong, L.-X., Peng, F., Sun, R.-C.: Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J. Agric. Food Chem. 59, 8208–8215 (2011)

    Article  Google Scholar 

  49. 49.

    Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D., Bonilla, R.: Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): effect in reducing N fertilization. Rev. Argent. Microbiol. (2017).

    Article  Google Scholar 

  50. 50.

    Samuneva, B., Rangelova, N., Bozadjiev, P., Djambaski, P.: New agriglasses containing antibacterial elements. Glass Sci. Technol. 75, 233–238 (2002)

    Google Scholar 

  51. 51.

    Sitarz, M.: The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies. J. Non-Cryst. Solids 357, 1603–1608 (2011)

    Article  Google Scholar 

  52. 52.

    Soltanpour, P.N.: Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity. Commun. Soil Sci. Plant Anal. 16, 323–338 (1985).

    Article  Google Scholar 

  53. 53.

    Sułowska, J., Wacławska, I., Olejniczak, Z.: Structural studies of copper-containing multicomponent glasses from the SiO2–P2O5–K2O–CaO–MgO system. Vib. Spectrosc. 65, 44–49 (2013)

    Article  Google Scholar 

  54. 54.

    Szumera, M., Wacławska, I.: Spectroscopic and thermal studies of silicate-phosphate glass. J. Therm. Anal. Calorim. 88, 151–156 (2007)

    Article  Google Scholar 

  55. 55.

    Wu, J., Lin, J., Li, G.: Influence of the COOH and COONa group and crosslink Density of poly (acrylic acid) montmorillonite superabsorbent composite on water absorbency. Polym. Int. J. 50, 1050 (2001)

    Article  Google Scholar 

  56. 56.

    Wu, J., Wei, Y., Lin, J., Lin, S.: Preparation of starch-graft-acrylamide/Kaolinite Superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polym. Int. 52, 1909 (2003)

    Article  Google Scholar 

  57. 57.

    Zhang, J., Yang, J.: Improve crop water-use efficiency through enhancing harvest index in cereals. In: Li, C.J., et al. (eds.) Plant Nutrition for Food Security, Human Health and Environmental Protection, pp. 560–561. Tsinghua University, Beijing (2005)

    Google Scholar 

Download references


The authors acknowledge the Science and Technology Development Fund (STDF) (Egypt) for funding the project entitled: Economic Conversion of Agricultural Wastes into Both Superabsorbent Cellulosic Hydrogel and Agriglass for the Application in Both the Optimization of Water Resources and Fertilizers in Agriculture (ID: 4259).

Author information



Corresponding author

Correspondence to Maha M. Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abou-Baker, N.H., Ouis, M., Abd-Eladl, M. et al. Transformation of Lignocellulosic Biomass to Cellulose-Based Hydrogel and Agriglass to Improve Beans Yield. Waste Biomass Valor 11, 3537–3551 (2020).

Download citation


  • Lignocellulosic biomass
  • Cellulose-hydrogel
  • Salinity
  • Water stress
  • Agriglass
  • Bean yield