Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products



To evaluate the potential of the industrial waste of Rojo Brillante persimmon as a source for value-added products. The antioxidant compounds present in persimmon industrial waste (peel and calyx) and the suitability of this bagasse to be used as a substrate second-generation bioethanol production are studied and discussed. Both value-added products would contribute to the valorization of persimmon fruit residues, which are expected to increase to a higher extent in subsequent years, thus contributing to the food industry sustainability and circular economy.


Antioxidant properties were evaluated by analyzing total phenol content, soluble tannins, flavonoids and antioxidant capacity of the waste, consisting of the peel and calyx of the fresh-cut persimmon industry. In a different approach, several fermentation and saccharification processes were assayed in order to valorize the waste as a substrate for bioethanol production: direct fermentation (DF) of the waste (with water addition, sterilized or not) was carried out and compared with simultaneous saccharification and fermentation (SSF) of the waste (with and without water addition).


The amount of phenols (59.2 ± 0.4 mg AGE/100 g FW), flavonoids (7.5 ± 0.4 mg QE/100 g FW) and tannins (11.43 ± 0.08 g AGE/100 g FW), as well as the antioxidant capacity (16.67 mg TE/100 g FW) of persimmon industrial waste were in the range of the pulp values. Persimmon waste was especially rich in carotenoids: β-carotene (400 ± 7 µg/100 g FW) and lycopene (194.3 ± 0.7 µg/100 g FW), these being values higher than in the whole fruit or pulp. Bioethanol production was more successful when a simultaneous saccharification and fermentation process was directly applied on the grinded waste (0.36 ± 0.010 gethanol/gsugar), as compared to the other DF and SSF assayed.


Persimmon waste can be considered a good candidate for obtaining value-added products. Carotenoids could be extracted from this waste, but it is recommended to develop food ingredients in the form of flours of powders to be used as functional ingredients. Persimmon waste is also recommended as a substrate for second-generation bioethanol production, either alone or mixed with other food residual biomass.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Del Bubba, M., Giordani, E., Cincinelli, A., Checchini, L., Galvan, P.: Nutraceutical properties and sugar contents in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 22, 668–677 (2009)

    Article  Google Scholar 

  2. 2.

    FAO. Food and Agriculture organization of the United Nations. http://www.fao.org

  3. 3.

    Arnal, L., Del Río, M.A.: Removing astringency by carbon dioxide and nitrogen-enriched atmospheres in persimmon fruit cv. Rojo brillante. J. Food Sci. 68, 1516–1518 (2003)

    Article  Google Scholar 

  4. 4.

    Lucas-González, R., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M.: Effect of particle size on phytochemical composition and antioxidant properties of two persimmon flours from Diospyros kaki Thunb. vars. ‘Rojo Brillante’ and ‘Triumph’ co-products. J. Sci. Food Agric. 98, 504–510 (2018)

    Article  Google Scholar 

  5. 5.

    Kim, Y.J., Lee, S.J., Kim, M.Y., Kim, G.R., Chung, H.S., Park, H.J., Kim, M.O., Kwon, J.H.: Physicochemical and organoleptic qualities of sliced-dried persimmons as affected by drying methods. Korean J. Food Sci. Technol. 41(1), 64–68 (2009)

    Google Scholar 

  6. 6.

    Hernández-Carrión, M., Varela, P., Hernando, I., Fiszman, S.M., Quiles, A.: Persimmon milkshakes with enhanced functionality: understanding consumers’ perception of the concept and sensory experience of a functional food. LWT Food Sci. Technol. 62, 384–392 (2015)

    Article  Google Scholar 

  7. 7.

    Han, L., Qi, S., Lu, Z., Li, L.: Effects of immature persimmon (Diospyros kaki linn. F.) juice on the pasting, textural, sensory and color properties of rice noodles. J. Texture Stud. 43(3), 187–194 (2012)

    Article  Google Scholar 

  8. 8.

    Brun, C.A.: (2015). Persimmons: An over-view of cultivars, production, harvesting, and marketing. http://ucce.ucdavis.edu/files/datastore/391-472.pdf

  9. 9.

    Ghidelli, C., Mateos, M., Rojas-Argudo, C., Pérez-Gago, M.B.: Effect of antioxidants in controlling enzymatic browning of minimally processed persimmon Rojo Brillante. Postharvest Biol. Technol. 86, 487–493 (2013)

    Article  Google Scholar 

  10. 10.

    Sanchís, E., Mateos, M., Pérez-Gago, M.B.: Effect of antibrowning dips and controlled atmosphere on the physico-chemical, visual and nutritional quality of minimally processed Rojo Brillante persimmons. Food Sci. Technol. Int. 23(1), 3–16 (2015)

    Article  Google Scholar 

  11. 11.

    Kim, S.K., Lee, G.D., Jeong, S.K.: Monitoring on fermentation of persimmon vinegar from persimmon peel. Korean J. Food Sci. Technol. 35(4), 642–647 (2003)

    Google Scholar 

  12. 12.

    Ramachandraiah, K., Chin, K.R.: Effect of particle size of persimmon by-product powders on their physicochemical properties and antioxidant activities in porcine patties. J Food Process Eng. 41(1), 1–9

  13. 13.

    Martínez-Las Heras, R., Landines, E.F., Heredia, A., Castelló, M.L., Andrés, A.: Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. J. Food Sci. Technol. 54(9), 2902–2912 (2017)

    Article  Google Scholar 

  14. 14.

    George, A., Redpath, S.: Health and medicinal benefits of persimmon fruit: A review. Adv. Horticult. Sci. 22(4), 244–249 (2008)

    Google Scholar 

  15. 15.

    Takayuki, O.: (2005). Persimmon: Your healthy autumn treats. Asahikawa Inf. 108, 1–2 (In Japanese)

    Google Scholar 

  16. 16.

    García-Alonso, M., de Pascual-Teresa, S., Santos-Buelga, C., Rivas-Gonzalo, J.C.: Evaluation of the antioxidant properties of fruits. Food Chem. 84(1), 13–18 (2004)

    Article  Google Scholar 

  17. 17.

    Jiménez-Sánchez, C., Lozano-Sánchez, J., Martí, N., Saura, D., Valero, M., Segura-Carretero, A., Fernández Gutiérrez, A.: Characterization of polyphenols, sugars, and other polar compounds in persimmon juices produced under different technologies and their assessment in terms of compositional variations. Food Chem. 182(1), 282–291 (2015)

    Article  Google Scholar 

  18. 18.

    Ayala-Zavala, J.F., Vega-Vega, V., Palafox-Carlos, H., Villa-Rodriguez, J.A., Siddiqui, W., Dávila-Aviña, Md, González-Aguilar, J.E., G.A: Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 44(7), 1866–1874 (2011)

    Article  Google Scholar 

  19. 19.

    Deng, G.-F., Shen, C., Xu, X.-R., Kuang, R.-D., Guo, Y.-J., Zeng, L.-S., Gao, L.-L., Lin, X., Xie, J.-F., Xia, E.-Q., Li, S., Wu, S., Chen, F., Ling, W.-H., Li, H.-B.: Potential of fruit wastes as natural resources of bioactive compounds. Int. J. Mol. Sci. 13, 8308–8323 (2012)

    Article  Google Scholar 

  20. 20.

    Song, C., Zhang, W., Pei, Y., Fan, G., Xu, G.: Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions. Atmos. Environ. 40, 1957–1970 (2006)

    Article  Google Scholar 

  21. 21.

    Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52, 858–875 (2011)

    Article  Google Scholar 

  22. 22.

    Chen, H.Z., Qiu, W.H.: Key technologies for bioethanol production from lignocellulose. Biotechnol. Adv. 28, 556–562 (2010)

    Article  Google Scholar 

  23. 23.

    EU/2015/1513: Directive (EU) 2015/1513 of the European parliament and of the council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources

  24. 24.

    Conesa, C., Seguí, L., Fito, P.: Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste Biomass Valorization 9(8), 1359–1368 (2018)

    Article  Google Scholar 

  25. 25.

    Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., Zacchi, G.: A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem. 42(5), 834–839 (2007)

    Article  Google Scholar 

  26. 26.

    Seguí, L., Fito, P.: An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J. Cleaner Prod. 172(20), 1123–1224 (2018)

    Google Scholar 

  27. 27.

    Scheel, C.: Beyond sustainability. Transforming industrial zero-valued residues into increasing economic returns. J. Cleaner Prod. 131(10), 376–386 (2016)

    Article  Google Scholar 

  28. 28.

    Goula, A.M., Lazarides, H.N.: Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: the cases of olive mill and pomegranate wastes. J. Food Eng. 167, 45–50 (2015)

    Article  Google Scholar 

  29. 29.

    Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Cleaner Prod. 65, 28–41 (2014)

    Article  Google Scholar 

  30. 30.

    AOAC: Association of Official Analytical Chemist. Official Methods of Analysis, 20013. AOAC, Washington, DC (1980)

    Google Scholar 

  31. 31.

    Van Soest, P.V., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Article  Google Scholar 

  32. 32.

    Veberic, R., Juhar, J., Mikulic-Petkovsek, M., Stampar, F., Schmitzer, V.: Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chem. 119, 477–483 (2010)

    Article  Google Scholar 

  33. 33.

    Singleton, V.L., Rossi, J.A.: Colourimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  34. 34.

    Luximon-Ramma, A., Bahorun, T., Soobrattee, M.A., Aruoma, O.I.: Antioxidant Activities of phenolic, proanthocyanidin, and flavonoid. components in extracts of Cassia fistula. J. Agric. Food Chem. 50(18), 5042–5047 (2002)

    Article  Google Scholar 

  35. 35.

    Biehler, E., Mayer, F., Hoffman, L., Krause, E., Bohn, T.: Comparison of 3 spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. J. Food Sci. 75(1), 55–61 (2010)

    Article  Google Scholar 

  36. 36.

    Cámara, M., Torrecilla, J.S., Cáceres, J.O., Cortes Sánchez Mata, M., Fernández-Ruiz, V.: Neural network analysis of spectroscopic data of lycopene and β-carotene content in food samples compared to HPLC-UV-Vis. J. Agricult. and Food Chem. 58(1), 72–75 (2010)

    Article  Google Scholar 

  37. 37.

    Sadler, G., Davis, J., Dezman, D.: Rapid extraction of lycopene and b-carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 55, 1460–1461 (1990)

    Article  Google Scholar 

  38. 38.

    Shahidi, F., Liyana-Pathirana, C.M., Wall, D.S.: Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 99, 478–483 (2006)

    Article  Google Scholar 

  39. 39.

    Sassner, P., Galbe, M., Zacchi, G.: Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated salix at high dry-matter content. Enzyme Microb. Technol. 39, 756–762 (2006)

    Article  Google Scholar 

  40. 40.

    Soccol, cR., da Costa, F., Letti, E.S., Karp, L.A.J., Woiciechowski, S.C., A.L. and de Souza Vandenberghe, L.P.: Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 1(1), 52–71 (2017)

    Article  Google Scholar 

  41. 41.

    Arshad, m, Hussain, t, Iqbal, M., Abbas, M.: Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Braz. J. Microbiol. 48, 403–409 (2017)

    Article  Google Scholar 

  42. 42.

    Hirai, S., Kondo, T.: Problem in the saccharides analysis of the fruits and the countermeasure. Iida Joshi Tanki Daigadu Kiyo 19, 59–68 (2002) (In Japanese)

    Google Scholar 

  43. 43.

    Giordani, E., Doumett, S., Nin, S., Del Bubba, M.: Selected primary and secondary metabolites in fresh persimmon (Diospyros kaki Thunb.): a review of analytical methods and current knowledge of fruit composition and health benefits. Food Res. Int. 44 (2011), 1752–1767 (2011)

    Article  Google Scholar 

  44. 44.

    Denev, P., Yordanov, A.: Total polyphenol, proanthocyanidin and flavonoid content, carbohydrate composition and antioxidant activity of persimmon (Diospyros kaki L.) fruit in relation to cultivar and maturity stage. Bulg. J. Agric. Sci. 19, 981–988 (2013)

    Google Scholar 

  45. 45.

    Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., Weisz, M., Trakhtenberg, S., Martín-Belloso, O.: Comparative content of dietary fiber, total phenolics and minerals in persimmon and apples. J. Agric. Food Chem. 49, 952–957 (2001)

    Article  Google Scholar 

  46. 46.

    Park, Y.S., Jung, S.T., Kang, S.G., Delgrado-Licon, E., Ayala, A.L.M., Tapia, M.S., Martín-Belloso, O., Trakhtenberg, S., Goristein, S.: Drying of persimmons (Dyospiros kaki L.) and the following changes in the studied bioactive compounds and the total radical scavenging activities. LWT Food Sci. Technol. 39, 748–755 (2006)

    Article  Google Scholar 

  47. 47.

    Katsube, T., Tabata, H., Ohta, Y., Yamasaki, Y., Anuurad, E., Shiwaku, K., Yamane, Y.: Screening of antioxidant activity in edible plant products: comparison of low density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin–Ciocalteu assay. J. Agricult. Food Chem. 52, 2391–2396 (2004)

    Article  Google Scholar 

  48. 48.

    Salvador, A., Arnal, L., Besada, C., Larrea, V., Quiles, A., Pérez-Munuera, I.: Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Technol. 46, 181–188 (2007)

    Article  Google Scholar 

  49. 49.

    Zhou, C., Zhao, D., Sheng, Y., Tao, J., Yang, Y.: Carotenoids in fruits of different persimmon cultivars. Molecules 16, 624–636 (2011)

    Article  Google Scholar 

  50. 50.

    Daood, H.G., Biacs, P., Czinkotai, B., Hoschke, A.: Chromatographic investigation of carotenoids, sugars and organic acids from Diospyros kaki fruits. Food Chem. 45, 151–155 (1992)

    Article  Google Scholar 

  51. 51.

    De Ancos, B., Gonzales, E., Cano, P.: Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. J. Agric. Food Chem. 48, 3542–3548 (2000)

    Article  Google Scholar 

  52. 52.

    Wright, K., Kader, A.A.: Effect of slicing and controlled-atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biol. Technol. 10, 39–48 (1997)

    Article  Google Scholar 

  53. 53.

    Von Elbe, J.H., Schwartz, S.J.: Colorants. In: Fennema, O.R. (ed.) Food Chemistry, pp. 651–722. Marcel Dekker, Inc, New York (1996)

    Google Scholar 

  54. 54.

    Martínez-Las Heras, R., Amigo-Sánchez, J.C., Heredia, A., Castelló, M.L., Andrés, A.: Influence of preharvest treatments to reduce the seasonality of persimmon production on color, texture and antioxidant properties during storage. CyTA 14(2), 333–339 (2016)

    Google Scholar 

  55. 55.

    Elumalai, S., Thangavelu, V.: Simultaneous saccharification and fermentation (SSF) of pretreated sugarcane bagasse using Cellulase and Saccharomyces cerevisiae—Kinetics and modelling. Chem. Eng. Res. Bull. 14, 29–35 (2010)

    Article  Google Scholar 

  56. 56.

    Viikari, L., M.; Puranen, Vehmaanperä, T., Siika-aho, M.: Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 108, 121–145 (2007)

    Google Scholar 

Download references


The authors would like to acknowledge the financial support of the Universitat Politècnica de València FPI grant programme and Anecoop S. Coop for facilitating the persimmon waste.

Author information



Corresponding author

Correspondence to Lucía Seguí.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conesa, C., Laguarda-Miró, N., Fito, P. et al. Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products. Waste Biomass Valor 11, 3749–3760 (2020). https://doi.org/10.1007/s12649-019-00621-0

Download citation


  • Persimmon
  • Antioxidants
  • Carotenoids
  • Food waste
  • Waste valorization
  • Second-generation bioethanol