Skip to main content

Advertisement

Log in

Methane Production from the Co-digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The optimization of factors affecting methane production from the co-digestion of algal biomass with crude glycerol was investigated using response surface methodology with a central composite design. The investigated parameters included algal biomass, crude glycerol and inoculum concentration. The inoculum and algal biomass concentration had a significant individual effect on the methane production (p ≤ 0.05). The interactive effect on methane production was found to be between algal biomass and crude glycerol (p ≤ 0.05). The optimal conditions were 20.02 g-VS/L of crude glycerol, 9.76 g-VS/L of inoculum concentration and 5.50 g-VS/L of algal biomass. Under optimum conditions, the maximum methane production of 58.88 mL-CH4/L was obtained. The difference between the observed methane production (58.88 mL-CH4/L) and the predicted methane (68.94 mL-CH4/L) was 14.59%. Under the optimum conditions, the energy production of 92.47 J/g-VSadded was obtained. The polymerase chain reaction-denaturing gradient gel electrophoresis analysis indicated that the methane producers present in the fermentation broth were Methanosarcina sp., Methanoregula sp., Methanospirillum sp. and Methanoculleus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johansson, B.: Security aspects of future renewable energy systems–a short overview. Energy. 61, 598–605 (2013). https://doi.org/10.1016/j.energy.2013.09.023

    Article  Google Scholar 

  2. Assawamongkholsiri, T., Reungsang, A., Plangkang, P., Sittijunda, S.: Repeated batch fermentation for photo-hydrogen and lipid production from wastewater of a sugar manufacturing plant. Int. J. Hydrog. Energy. 43(7), 3605–3617 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.119

    Article  Google Scholar 

  3. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14(2), 578–597 (2010). https://doi.org/10.1016/j.rser.2009.10.003

    Article  Google Scholar 

  4. Fairley, P.: Introduction: next generation biofuels. Nature 474, S2 (2011).https://doi.org/10.1038/474S02a

    Article  Google Scholar 

  5. Lakatos, G., Balogh, D., Farkas, A., Ördög, V., Nagy, P.T., Bíró, T., Maróti, G.: Factors influencing algal photobiohydrogen production in algal bacterial co-cultures. Algal Res. 28, 161–171 (2017). https://doi.org/10.1016/j.algal.2017.10.024

    Article  Google Scholar 

  6. Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R.: A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181, 42–59 (2018). https://doi.org/10.1016/j.jclepro.2018.01.125

    Article  Google Scholar 

  7. Reungsang, A., Pattra, S., Sittijunda, S.: Optimization of key factors affecting methane production from acidic effluent coming from the sugarcane juice hydrogen fermentation process. Energies 5(11), 4746 (2012)

    Article  Google Scholar 

  8. Ward, A.J., Lewis, D.M., Green, F.B.: Anaerobic digestion of algae biomass: a review. Algal Res. 5, 204–214 (2014). https://doi.org/10.1016/j.algal.2014.02.001

    Article  Google Scholar 

  9. Tuesorn, S., Wongwilaiwalin, S., Champreda, V., Leethochawalit, M., Nopharatana, A., Techkarnjanaruk, S., Chaiprasert, P.: Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Biores. Technol. 144, 579–586 (2013). https://doi.org/10.1016/j.biortech.2013.07.013

    Article  Google Scholar 

  10. Prapinagsorn, W., Sittijunda, S., Reungsang, A.: Co-digestion of napier grass and its silage with cow dung for methane production. Energies 10(10), 1654 (2017)

    Article  Google Scholar 

  11. Teixeira Franco, R., Buffière, P., Bayard, R.:Cattle manure for biogas production. Does ensiling and wheat straw addition enhance preservation of biomass and methane potential? Biofuels (2017). https://doi.org/10.1080/17597269.2017.1387751

    Article  Google Scholar 

  12. Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J.: Biogas production from food waste via co-digestion and digestion effects on performance and microbial ecology. Sci. Rep. 7(1), 17664 (2017). https://doi.org/10.1038/s41598-017-15784-w

    Article  Google Scholar 

  13. He, S., Fan, X., Katukuri, N.R., Yuan, X., Wang, F., Guo, R.-B.: Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Biores. Technol. 204, 145–151 (2016). https://doi.org/10.1016/j.biortech.2015.12.073

    Article  Google Scholar 

  14. Mahdy, A., Ballesteros, M., González-Fernández, C.: Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Biores. Technol. 199, 319–325 (2016). https://doi.org/10.1016/j.biortech.2015.08.080

    Article  Google Scholar 

  15. Gruber-Brunhumer, M.R., Jerney, J., Zohar, E., Nussbaumer, M., Hieger, C., Bochmann, G., Schagerl, M., Obbard, J.P., Fuchs, W., Drosg, B.: Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Res. 12, 230–238 (2015). https://doi.org/10.1016/j.algal.2015.08.022

    Article  Google Scholar 

  16. Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Biores. Technol. 172, 403–412 (2014). https://doi.org/10.1016/j.biortech.2014.08.114

    Article  Google Scholar 

  17. Balussou, D., Kleyböcker, A., McKenna, R., Möst, D., Fichtner, W.: An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoriz. 3(1), 23–41 (2012). https://doi.org/10.1007/s12649-011-9094-2

    Article  Google Scholar 

  18. Yen, H.-W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores. Technol. 98(1), 130–134 (2007). https://doi.org/10.1016/j.biortech.2005.11.010

    Article  Google Scholar 

  19. Rétfalvi, T., Szabó, P., Hájos, A.-T., Albert, L., Kovács, A., Milics, G., Neményi, M., Lakatos, E., Ördög, V.: Effect of co-substrate feeding on methane yield of anaerobic digestion of Chlorella vulgaris. J. Appl. Phycol. 28(5), 2741–2752 (2016). https://doi.org/10.1007/s10811-016-0796-5

    Article  Google Scholar 

  20. Nielsen, H.B., Uellendahl, H., Ahring, B.K.: Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31(11), 820–830 (2007). https://doi.org/10.1016/j.biombioe.2007.04.004

    Article  Google Scholar 

  21. Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., Wang, Y.: Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag. 33(12), 2653–2658 (2013). https://doi.org/10.1016/j.wasman.2013.05.014

    Article  Google Scholar 

  22. Phanduang, O., Lunprom, S., Salakkam, A., Reungsang, A.: Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp. biomass. Int. J. Hydrog. Energy. 42(15), 9650–9659 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.084

    Article  Google Scholar 

  23. Owen, W.F., Stuckey, D.C., Healy, J.B. Jr., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13(6), 485–492 (1979). https://doi.org/10.1016/0043-1354(79)90043-5

    Article  Google Scholar 

  24. Saraphirom, P., Reungsang, A.: Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int. J. Hydrog. Energy. 35(24), 13435–13444 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.122

    Article  Google Scholar 

  25. Zheng, Y., Tang, X., He, D., Xu, L.: Investigation on pseudorandom properties of FCSR sequence. In: 2005 International Conference on Communications, Circuits and Systems Proceedings 2005, pp. 66–70

  26. Kongjan, P., O-Thong, S., Angelidaki, I.: Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Biores. Technol. 102(5), 4028–4035 (2011). https://doi.org/10.1016/j.biortech.2010.12.009

    Article  Google Scholar 

  27. Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015). https://doi.org/10.1016/j.btre.2014.10.005

    Article  Google Scholar 

  28. Reungsang, A., Sittijunda, S., Sreela-or, C.: Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renew. Energy. 86, 1224–1231 (2016). https://doi.org/10.1016/j.renene.2015.09.051

    Article  Google Scholar 

  29. Pott, R.W.M., Howe, C.J., Dennis, J.S.: The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Biores. Technol. 152, 464–470 (2014). https://doi.org/10.1016/j.biortech.2013.10.094

    Article  Google Scholar 

  30. Sittijunda, S., Reungsang, A.: Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. Int. J. Hydrog. Energy. 42(45), 27558–27569 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.149

    Article  Google Scholar 

  31. Venkataramanan, K.P., Venkataramanan, K.P., Boatman, J.J., Kurniawan, Y., Taconi, K.A., Bothun, G.D., Scholz, C.: Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol. 93(3), 1325–1335 (2012). https://doi.org/10.1007/s00253-011-3766-5

    Article  Google Scholar 

  32. Ingram, L.O.: Adaptation of membrane lipids to alcohols. J. Bacteriol. 125(2), 670–678 (1976)

    Article  Google Scholar 

  33. Kameswari, K.S.B., Kalyanaraman, C., Porselvam, S., Thanasekaran, K.: Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol. Environ. Policy. 14(2), 241–250 (2012). https://doi.org/10.1007/s10098-011-0391-z

    Article  Google Scholar 

  34. Hobbs, S.R., Landis, A.E., Rittmann, B.E., Young, M.N., Parameswaran, P.: Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. 71, 612–617 (2018). https://doi.org/10.1016/j.wasman.2017.06.029

    Article  Google Scholar 

  35. Sittijunda, S., Reungsang, A.: Media optimization for biohydrogen production from waste glycerol by anaerobic thermophilic mixed cultures. Int. J. Hydrog. Energy. 37(20), 15473–15482 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.185

    Article  Google Scholar 

  36. Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W., Chang, J.S.: Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1–10 (2013). https://doi.org/10.1016/j.bej.2013.03.006

    Article  Google Scholar 

  37. Himanshu, H., Murphy, J.D., Grant, J., O’Kiely, P.: Antagonistic effects on biogas and methane output when co-digesting cattle and pig slurries with grass silage in in vitro batch anaerobic digestion. Biomass Bioenergy 109, 190–198 (2018). https://doi.org/10.1016/j.biombioe.2017.12.027

    Article  Google Scholar 

  38. Yan, J.: Handbook of Clean Energy Systems. Wiley, Hoboken (2015)

    Book  Google Scholar 

  39. Bayer, B., Vojvoda, J., Offre, P., Alves, R.J.E., Elisabeth, N.H., Garcia, J.A.L., Volland, J.M., Srivastava, A., Schleper, C., Herndl, G.J.: Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 10, 1051 (2015).https://doi.org/10.1038/ismej.2015.200

    Article  Google Scholar 

Download references

Acknowledgements

This research project is supported by Mahidol University. The authors would like to thank the Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University for the facilities support and partially financial support from TRF Senior Research Scholar (Grant No. RTA5980004). Technical assistant by Napapat Sitthikitpanya is very much appreciated.

Author information

Authors and Affiliations

Authors

Contributions

AR and SS conceived and designed the experiments. SS performed the experiment, analyzed the data and wrote the manuscript. This experiment was supervised by AR. All authors read and approved the manuscript.

Corresponding author

Correspondence to Alissara Reungsang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sittijunda, S., Reungsang, A. Methane Production from the Co-digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures. Waste Biomass Valor 11, 1873–1881 (2020). https://doi.org/10.1007/s12649-018-0542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0542-0

Keywords

Navigation