Analysis of Extraction Kinetics of Bioactive Compounds from Spent Coffee Grounds (Coffea arábica)

  • Ashley Sthefanía Caballero-Galván
  • Daissy Lorena Restrepo-Serna
  • Mariana Ortiz-Sánchez
  • Carlos Ariel Cardona-Alzate
Original Paper

Abstract

The main objective of this work is to determine the extraction kinetics of bioactive compounds contained in spent coffee grounds through two extraction methods (e.g. Soxhlet extraction and ultrasonic assisted extraction). For this, it was analyzed the total phenolic compounds and chlorogenic acid. The analyzed samples were taken at different time intervals during the extraction procedure and using ethanol 60%v/v as solvent. The importance of determining the extraction kinetics of a compound by implementing different extraction technologies was observed. At the same time, it was evidenced that the ultrasonic assisted extraction (UAE) presented the best concentrations for chlorogenic acid. Moreover, the UAE has a great advantage due to the low required time for extraction compared to Soxhlet extraction.

Keywords

Conventional extraction Extraction kinetics Spent coffee grounds Ultrasonic assisted extraction 

Notes

Acknowledgements

The authors express their gratitude to the Universidad Nacional de Colombia at Manizales, the research projects entitled “Small-Scale Integrated biorefineries to produce an optimal range of bio-products from a variety of rural agricultural and agro-industrial residues with a minimum consumption of fossil fuels energy” with HERMES code 30928 and “Evaluación tecno-económica y ambiental de una biorrefinería utilizando los residuos del café” with HERMES code 35434.

References

  1. 1.
    Foreign Agricultural Service: Coffee: World Markets and Trade. United States Department of Agriculture, Washington, DC (2016)Google Scholar
  2. 2.
    Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I.: Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 7(12), 3493–3503 (2014)CrossRefGoogle Scholar
  3. 3.
    Mussatto, S.I., Ballesteros, L.F., Martins, S., Teixeira, J.A.: Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 83(1), 173–179 (2011)CrossRefGoogle Scholar
  4. 4.
    Scully, D., Jaiswal, A., Abu-Ghannam, N.: An investigation into spent coffee waste as a renewable source of bioactive compounds and industrially important sugars. Bioengineering 3(4), 33 (2016)CrossRefGoogle Scholar
  5. 5.
    Girotto, F., Lavagnolo, M.C., Pivato, A.: Spent coffee grounds alkaline pre-treatment as biorefinery option to enhance their anaerobic digestion yield. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0033-8 Google Scholar
  6. 6.
    Efthymiopoulos, I., Hellier, P., Ladommatos, N., Kay, A., Mills-Lamptey, B.: Effect of solvent extraction parameters on the recovery of oil from spent coffee grounds for biofuel production. Waste Biomass Valoriz. 0(0), 1–12 (2017)Google Scholar
  7. 7.
    Campos Vega, R., Loarca, G., Piñaa, H., Vergara, Castañeda, Oomahb, D.: Spent coffee grounds: a review on current research and future prospects. Trends Food Sci. Technol. 45, 24–36 (2015)CrossRefGoogle Scholar
  8. 8.
    Mussatto, S.I., Carneiro, L.M., Silva, J.P.A., Roberto, I.C., Teixeira, J.A.: A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 83(2), 368–374 (2011)CrossRefGoogle Scholar
  9. 9.
    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of novel pyrolysis reactor technology to concentrate bio-oil components with antioxidant activity from tobacco, tomato and coffee ground biomass. Waste and Biomass Valoriz. 0(0), 1–11 (2017)Google Scholar
  10. 10.
    Zuorro, A., Lavecchia, R.: Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J. Clean. Prod. 34, 49–56 (2012)CrossRefGoogle Scholar
  11. 11.
    Ballesteros, L.F., Ramirez, M.J., Orrego, C.E., Teixeira, J.A., Mussatto, S.I.: Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. J. Food Eng. 199, 1–8 (2017)CrossRefGoogle Scholar
  12. 12.
    Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., Tai, T.C.: Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5(10), 3779–3827 (2013)CrossRefGoogle Scholar
  13. 13.
    Brenna, O., Buratti, S., Cosio, M.S., Mannino, S.: A new HPLC method for the determination of polyphenols in wines based on the use of less aggressive eluents and a coupled revelation system. Electroanalysis 10(17), 1204–1207 (1998)CrossRefGoogle Scholar
  14. 14.
    Ignat, I., Volf, I., Popa, V.I.: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126(4), 1821–1835 (2011)CrossRefGoogle Scholar
  15. 15.
    Rice-Evans, C.A., Miller, N.J., Bolwell, P.G., Bramley, P.M., Pridham, J.B.: The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22(4), 375–383 (1995)CrossRefGoogle Scholar
  16. 16.
    Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D.: Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46(10), 4113–4117 (1998)CrossRefGoogle Scholar
  17. 17.
    Bazzano, L.A., et al.: Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr. 76(1), 93–99 (2002)CrossRefGoogle Scholar
  18. 18.
    Raj, S., Gothandam, K.M.: Hepatoprotective effect of polyphenols rich methanolic extract of Amorphophallus commutatus var. wayanadensis against CCl4 induced hepatic injury in swiss albino mice. Food Chem. Toxicol. 67, 105–112 (2014)CrossRefGoogle Scholar
  19. 19.
    Farid, R., et al.: Oral intake of purple passion fruit peel extract reduces pain and stiffness and improves physical function in adult patients with knee osteoarthritis. Nutr. Res. 30(9), 601–606 (2010)CrossRefGoogle Scholar
  20. 20.
    Majumdar, S., Srirangam, R.: Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J. Pharm. Pharmacol. 62(8), 951–965 (2010)CrossRefGoogle Scholar
  21. 21.
    Cherdshewasart, W., Subtang, S., Dahlan, W.: Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J. Pharm. Biomed. Anal. 43(2), 428–434 (2007)CrossRefGoogle Scholar
  22. 22.
    Chandra, A.K., De, N.: Goitrogenic/antithyroidal potential of green tea extract in relation to catechin in rats. Food Chem. Toxicol. 48(8–9), 2304–2311 (2010)CrossRefGoogle Scholar
  23. 23.
    Bravo, L., Sources, D., Significance, N.: Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56(11), 317–333 (1998)CrossRefGoogle Scholar
  24. 24.
    Ozcan, T., Akpinar-Bayizit, a, Yilmaz-Ersan, L., Delikanli, B.: Phenolics in human health. Int. J. Chem. Eng. Appl. 5(5), 393–396 (2014)Google Scholar
  25. 25.
    Cooper, R., Morré, D.J., Morré, D.M.: Medicinal benefits of green tea: part I. Review of noncancer health benefits. J. Altern. Complement. Med. 11(3), 521–528 (2005)CrossRefGoogle Scholar
  26. 26.
    Liu, R.H.: Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 134(12), 3479S–3485S (2004)CrossRefGoogle Scholar
  27. 27.
    Gandhi, G.R., Ignacimuthu, S., Paulraj, M.G.: Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem. Toxicol. 49(11), 2725–2733 (2011)CrossRefGoogle Scholar
  28. 28.
    An, B.-J., et al.: Biological and anti-microbial activity of irradiated green tea polyphenols. Food Chem. 88(4), 549–555 (2004)CrossRefGoogle Scholar
  29. 29.
    Yamamoto, T., et al.: Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem. 68(8), 1706–1711 (2004)CrossRefGoogle Scholar
  30. 30.
    Chiva-Blanch, G., Visioli, F.: Polyphenols and health: moving beyond antioxidants. J. Berry Res. 2(2), 63–71 (2012)Google Scholar
  31. 31.
    Baydar, N.G., Özkan, G., Sagdic, O.: Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control 15, 335–339 (2004)CrossRefGoogle Scholar
  32. 32.
    Lapornik, B., Prošek, M., Golc Wondra, A.: Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71(2), 214–222 (2005)CrossRefGoogle Scholar
  33. 33.
    Pekić, B., Kovač, V., Alonso, E., Revilla, E.: Study of the extraction of proanthocyanidins from grape seeds. Food Chem. 61(1–2), 201–206 (1998)Google Scholar
  34. 34.
    Cerón, I.X., Higuita, J.C., Cardona, C.A.: Design and analysis of antioxidant compounds from Andes Berry fruits (Rubus glaucus Benth) using an enhanced-fluidity liquid extraction process with CO2 and ethanol. J. Supercrit. Fluids 62, 96–101 (2012)CrossRefGoogle Scholar
  35. 35.
    Abdullah Al-Dhabia, N., Ponmurugana, K., Maran Jeganathanb, P.: Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 34, 206–213 (2017)CrossRefGoogle Scholar
  36. 36.
    Casazza, A.A., Aliakbarian, B., Mantegna, S., Cravotto, G., Perego, P.: Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J. Food Eng. 100(1), 50–55 (2010)CrossRefGoogle Scholar
  37. 37.
    Deng, Q., et al.: The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng. Rev. 7(3), 357–381 (2015)CrossRefGoogle Scholar
  38. 38.
    Bin Zou, T., Wang, M., Gan, R.Y., Ling, W.H.: Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci. 12(5), 3006–3017 (2011)CrossRefGoogle Scholar
  39. 39.
    Han, J.S., Rowell, J.S.: Chemical composition of fibers. In: Paper and Composites from Agro-Based Resources, chapt. 5, pp. 83–134. The CRC Press editorial (1997)Google Scholar
  40. 40.
    Sluiter, A., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D., Energy, D.: Determination of extractives in biomass. Biomass Anal. Technol. Team Lab. Anal. Proced., 1–8 (2004)Google Scholar
  41. 41.
    Sluiter, A., Hames, B., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D.: Determination of ash in biomass: laboratory analytical procedure (LAP). Nrel/Tp-510-42622, Colorado (2005)Google Scholar
  42. 42.
    Daza Serna, L.V.: Assessment of Nonconventional Pretreatments for Agriculture Wastes Utilization. Universidad Nacional de Colombia, Manizales (2015)Google Scholar
  43. 43.
    Rover, M.R., Brown, R.C.: Quantification of total phenols in bio-oil using the Folin–Ciocalteu method. J. Anal. Appl. Pyrolysis 104, 366–371, (2013)CrossRefGoogle Scholar
  44. 44.
    Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 28(1), 25–30 (1995)Google Scholar
  45. 45.
    Zhang, Q., Li, J., Wang, C., Sun, W., Zhang, Z., Cheng, W.: A gradient HPLC method for the quality control of chlorogenic acid, linarin and luteolin in Flos Chrysanthemi Indici suppository. J. Pharm. Biomed. Anal. 43(2), 753–757 (2007)CrossRefGoogle Scholar
  46. 46.
    Chen, H., Zuo, Y., Deng, Y.: Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chromatogr. A 913 (1–2), 387–395 (2001)CrossRefGoogle Scholar
  47. 47.
    Li, X., Wang, L., Li, Y., Xu, Y., Xue, Y.: Simultaneous determination of danshensu, ferulic acid, cryptotanshinone and tanshinone IIA in rabbit plasma by HPLC and their pharmacokinetic application in danxiongfang. J. Pharm. Biomed. Anal. 44(3), 1106–1112 (2007)CrossRefGoogle Scholar
  48. 48.
    Li, Y.-H., Sun, Z.-H., Zheng, P.: Determination of vanillin, eugenol and isoeugenol by RP-HPLC. Chromatographia 60(11–12), 709–713 (2004)CrossRefGoogle Scholar
  49. 49.
    Fiori, L., Valbusa, M., Lorenzi, D., Fambri, L.: Modeling of the devolatilization kinetics during pyrolysis of grape residues. Bioresour. Technol. 103(1), 389–397 (2012)CrossRefGoogle Scholar
  50. 50.
    Fiori, L., Basso, D., Costa, P.: Seed oil supercritical extraction: particle size distribution of the milled seeds and modeling. J. Supercrit. Fluids 47(2), 174–181 (2008)CrossRefGoogle Scholar
  51. 51.
    Xu, T.-J., Ting, Y.-P.: Fungal bioleaching of incineration fly ash: metal extraction and modeling growth kinetics. Enzyme Microb. Technol. 44(5), 323–328 (2009)CrossRefGoogle Scholar
  52. 52.
    Balyan, U., Sarkar, B.: Aqueous extraction kinetics of phenolic compounds from jamun (Syzygium cumini L.) seeds. Int. J. Food Prop. 20(2), 372–389 (2017)CrossRefGoogle Scholar
  53. 53.
    Mellado, J., et al.: Milk yield of holstein cows induced into lactation twice consecutively and lactation curve models fitted to artificial lactations. J. Integr. Agric. 13(6), 1349–1354 (2014)CrossRefGoogle Scholar
  54. 54.
    Adel Reyhanitabar, Gilkes, R.J.: Kinetics of DTPA extraction of zinc from calcareous soils. Geoderma 154(3–4), 289–293 (2010)CrossRefGoogle Scholar
  55. 55.
    Amendola, D., Faveri, D.M., Spigno, G., Grape marc phenolics: extraction kinetics, quality and stability of extracts. J. Food Eng. 97(3), 384–392 (2010)CrossRefGoogle Scholar
  56. 56.
    Cheung, Y.-C., Wu, J.-Y.: Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 79, 214–220 (2013)CrossRefGoogle Scholar
  57. 57.
    Athanasia, M.G.: Ultrasound-assisted extraction of pomegranate seed oil—kinetic modeling. J. Food Eng. 117(4), 492–498 (2013)CrossRefGoogle Scholar
  58. 58.
    Cardona Alzate, C.A., Solarte, J.C., Toro, Peña, ÁG.: Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catal. Today 302, 61–72 (2017)CrossRefGoogle Scholar
  59. 59.
    Triana, C.F., Quintero, J.A., Agudelo, R.A., Cardona, C.A., Higuita, J.C.: Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production. Energy 36(7), 4182–4190 2011CrossRefGoogle Scholar
  60. 60.
    Quintero, J.A., Moncada, J., Cardona, C.A.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139, 300–307 (2013)CrossRefGoogle Scholar
  61. 61.
    Moncada, B.J., Aristizábal, M.V., Cardona, A.C.A.: Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016)CrossRefGoogle Scholar
  62. 62.
    Moncada, J., Cardona, C.A., Higuita, J.C., Vélez, J.J., López-Suarez, F.E.: Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, techno-economic and environmental assessments. Chem. Eng. Sci. 140, 309–318 (2016)CrossRefGoogle Scholar
  63. 63.
    Le, P.T.K., Vu, Q.T.H., Nguyen, Q.T.V., Tran, K.A., Le, K.A.: Extraction and evaluation the biological activities of oil from spent coffee grounds. Chem. Eng. Trans. 56, 1729–1734 (2017)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ashley Sthefanía Caballero-Galván
    • 1
  • Daissy Lorena Restrepo-Serna
    • 1
  • Mariana Ortiz-Sánchez
    • 1
  • Carlos Ariel Cardona-Alzate
    • 1
  1. 1.Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Instituto de Biotecnología y AgroindustriaUniversidad Nacional de Colombia sede ManizalesManizalesColombia

Personalised recommendations