Skip to main content
Log in

Chitinase Production by Trichoderma harzianum Grown on a Chitin-Rich Mushroom Byproduct Formulated Medium

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to evaluate the use of chitin-rich mushroom (Agaricus bisporus) by-products chitin/glucan enriched fraction (M-Ch/G-F) as main carbon source for the production of chitinases by three different microorganisms (Trichoderma harzianum, Trichoderma atroviride and Bacillus licheniformis), in an attempt to obtain these enzymes using a cheap and abundant fermentation medium.

Methods

Microorganisms were grown in submerged fermentation using different media formulated with chitin powder (Chp), colloidal chitin (Chc) and M-Ch/G-F as the main carbon source, respectively. Enzyme productivity and secretion (secretome) was studied by electrophoretic and proteomic methods.

Results

All microorganisms produced higher chitinase activity in a medium formulated with M-Ch/G-F as a carbon source compared to medium formulated with Chp or CHc. T. harzianum showed the highest chitinase productivity (261.5 mU L−1 per day). Chitinase production was monitored by electrophoretic and proteomic methods. Electrophoretic method allowed the detection of 28 different proteins—three different chitinases with 82, 50 and 31 kDa. Proteomic analysis could identify 161 different proteins: 60 of them hydrolases, and 80% having glycolytic activity—5 of them were chitinases. These results show that cultivation of T. harzianum in a cheap and abundant fermentation medium represents a good procedure for large scale production of chitinases.

Conclusions

Our results show that cultivation of T. harzianum in a culture medium formulated with M-Ch/G-F, a cheap and abundant fermentation medium, is a good procedure for large scale production of glycosidases, particularly chitinases within a relatively short cultivation period of 6 days.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

M-Ch/G-F:

Mushroom chitin/glucan enriched fraction

Mm:

Minimal medium

GlcNAc:

N-acetylglucosamine

Chp :

Chitin powder

Chc :

Colloidal chitin

PDB:

Potato dextrose broth

References

  1. Shaikh, S.A., Deshpande, M.V.: Chitinolytic enzymes: their contribution to basic and applied research. World J. Microbiol. Biotechnol. 9, 468–475 (1993). https://doi.org/10.1007/BF00328035

    Article  Google Scholar 

  2. Barboza-Corona, J.E., Reyes-Rios, D.M., Salcedo-Hernández, R., Bideshi, D.K.: Molecular and biochemical characterization of an endoquitinase (ChiA-HD73) from Bacillus thuringiensis subsp. Kurstaki HD-73. Mol. Biotechnol. 39, 27–29 (2008). https://doi.org/10.1007/s12033-007-9025-4

    Article  Google Scholar 

  3. Tsujibo, H., Orikoshi, H., Shiotani, K., Hayashi, M., Umeda, J., Miyamoto, K., Imada, C., Okami, Y., Inamori, Y.: Characterization of chitinase C from marine bacterium Alteromonas sp. strain 0-7, and its corresponding gene and domain structure. Appl. Environ. Microbiol. 64, 472–478 (1998)

    Google Scholar 

  4. Fortuna-González, J.M.: Caracterización bioquímica y molecular de quitinasas en cepas mexicanas de B. thuringiensis. Doctoral thesis. Instituto Politécnico Nacional. Ciudad de México, México, (2010)

  5. Sastoque, C.: Aislamiento y selección de microorganismos productores de quitinasas a partir de residuos de concha de camarón con potencial biocontrolador. Tesis para optar el título de microbiólogo industrial, agrícola y veterinario. Pontificia Universidad Javeriana. Bogotá, Colombia (2005)

  6. Sahai, A.S., Manocha, M.S.: Chitinases of fungi and plants: Their involvement in morphogenesis and host-parasite interaction. Microbiol. 11, 317–338 (1993). https://doi.org/10.1111/j.1574-6976.1993.tb00004.x

    Google Scholar 

  7. Gessesse, A.: The use of Nug meal as a low cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62, 59–61 (1997). https://doi.org/10.1016/S0960-8524(97)00059-X

    Article  Google Scholar 

  8. Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G.: Bergey’s Manual of Sytematic Bacteriology. vol. 2. Williams & Wilkins, Baltimore (1986)

    Google Scholar 

  9. Schallmey, M., Singh, A., Ward, O.P.: Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1–17 (2004). https://doi.org/10.1139/w03-076

    Article  Google Scholar 

  10. Ramírez, M.G., Avelizapa, L.I., Avelizapa, N.G.R., Camarillo, R.C.: Colloidal chitin stained with Remazol Brilliant Blue R, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J. Microbiol. Methods 56, 213–219 (2004). https://doi.org/10.1016/j.mimet.2003.10.011

    Article  Google Scholar 

  11. Bautista, J.: CHAMPI-D. Project RTC-2015-4039-2 (2015)

  12. Görs, S., Schumann, R., Häubner, N., Karsten, U.: Fungal and algal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int. Biodeterior. Biodegradation 60, 50–59 (2007). https://doi.org/10.1016/j.ibiod.2006.10.003

    Article  Google Scholar 

  13. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  14. Bradford, M.M.: A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  15. Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., Buranabanyat, B.: Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. Biotechnol. J. 133, 50–57 (2008) https://doi.org/10.1016/j.jbiotec.2007.09.005

    Article  Google Scholar 

  16. Carbonero-Aguilar, P. Estudio de la oxidación de proteínas en ratas con encefalopatía hepática: una aproximación Proteómica. Doctoral thesis. Universidad de Sevilla. Sevilla, Spain (2012)

  17. Craig, R., Beavis, R.C.: A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom. 17, 2310–2316 (2003). https://doi.org/10.1002/rcm.1198

    Article  Google Scholar 

  18. Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003). https://doi.org/10.1021/ac0341261

    Article  Google Scholar 

  19. de Lima, F.B., Félix, C., Osório, N., Vitorino, A.A., Domingues, P., Correia, A., da Silva-Ribeiro, R.T., Esteves, A.C.: Secretome analysis of Trichoderma atroviride T17 biocontrol of Guignardia citricarpa. Biocontrol Sci. 99, 38–46 (2016). https://doi.org/10.1016/j.biocontrol.2017.01.003

    Google Scholar 

  20. Giese, E.,C., Corradi da Silva, M.I., Barbosa, A.M.: Fungal glucanase: production and application of β-1, 3 and β-1, 6-glucanases. Rev. Biotechnol. Cienc. Desenvol. 30, 97–104 (2003)

    Google Scholar 

  21. Mohamed, H.A.A., Wafaa, M.H., Attallah, A.G.: Genetic enhancement of Trichoderma viride to over produce different hydrolytic enzymes and their biocontrol potentially against root rot and white mold diseases in plants. Agric. Biol. J. N. Am. 1, 273–284 (2010)

    Article  Google Scholar 

  22. Latgé, J.P.: Tasting the fungal cell wall. Cell. Microbiol. 12, 863–872 (2010). https://doi.org/10.1111/j.1462-5822.2010.01474.x

    Article  Google Scholar 

  23. Rana, I.A., Loerz, H., Schaefer, W., Becker, D.: Over expression of chitinase and chitosanase genes from Trichoderma harzianum under constitutive and induced promoters in order to increase disease resistance in wheat (Triticum aestivium). Mol. Plant Breed. 3, 37–49 (2012). https://doi.org/10.5376/mpb.2012.03.0004

    Google Scholar 

  24. Gajera, H.P., Vakharia, D.N.: Production of lytic enzymes by Trichoderma isolated during in vitro antagonism with Aspergilus niger, the causal agent of collar rot of peanut. Braz. J. Microbiol. 43, 43–52 (2012). https://doi.org/10.1590/S1517-83822012000100005

    Article  Google Scholar 

  25. Kubicek, C.P., Mach, R.I., Peterbauer, C.K., Lorito, M.: Trichoderma: from genes to biocontrol. Plant Pathol. J. 83, 11–23 (2001). http://www.jstor.org/stable/41998018

  26. Herpoël-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Mollé, D., Lignon, S., Mathis, H., Sigoillot, J.C., Monot, F., Asther, M.: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels 1, 1–12 (2008). https://doi.org/10.1186/1754-6834-1-18

    Article  Google Scholar 

  27. Adav, S.S., Chao, L.T., Sze, S.K.: Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degratation. Mol. Cell Proteomics. 11, 1–15 (2012). https://doi.org/10.1074/mcp.M111.012419

    Article  Google Scholar 

  28. Bendtsen, J.D., Nielsen, H., Von Heijne, G., Brunak, S.: Improved prediction of signal peptides: signalP 3.0. J. Mol. Biol. 340, 783–795 (2004). https://doi.org/10.1016/j.jmb.2004.05.028

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (Project RTC-2015-4039-2), which has partial financial support from the FEDER funds of the European Union. J.A. del Campo was supported by Nicolás Monardes Program from Servicio Andaluz de Salud (SAS). The authors thank Paula Bautista for assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bautista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbina-Salazar, A., Inca-Torres, A.R., Falcón-García, G. et al. Chitinase Production by Trichoderma harzianum Grown on a Chitin-Rich Mushroom Byproduct Formulated Medium. Waste Biomass Valor 10, 2915–2923 (2019). https://doi.org/10.1007/s12649-018-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0328-4

Keywords

Navigation