Skip to main content
Log in

Artichoke Waste as a Source of Phenolic Antioxidants and Bioenergy

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The thermal properties of artichoke waste, a relatively rich source of phenolic antioxidants, were investigated before and after phenolic recovery in order to assess its suitability as a source of bioproducts and bioenergy. The two main fractions of the waste, the bracts and the stems, were submitted to solvent extraction with aqueous ethanol (0, 50, 100% v/v) and the resulting extracts were assayed for total phenolics, flavonoids and antioxidant activity. The polyphenol content of stems was 51.10 ± 0.74 mg GAE/g and that of bracts was 24.58 ± 0.57 mg GAE/g. Using 50% aqueous ethanol provided the highest extraction yields, with over 80% of phenolic compounds recovered. The higher heating value of artichoke waste was about 16 MJ/kg and changed very little after polyphenol extraction. The ash content of the two waste fractions was close to 5% (w/w) and was further reduced upon phenolic recovery. The elemental ash composition for the two fractions was very similar: silicon was the most abundant element (> 40% w/w) followed by phosphorus, calcium and potassium. Finally, TGA/DTG analysis showed no significant differences in the thermal properties of the extracted and unextracted materials, suggesting the possibility of recovering phenolic antioxidants from artichoke waste and bioenergy from the extraction residue. This could provide economic advantages to the artichoke industry and reduce its environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pandino, G., Lombardo, S., Mauromicale, G., Williamson, G.: Characterization of phenolic acids and flavonoids in leaves stems, bracts and edible parts of globe artichokes. Acta Hortic. 942, 413–417 (2012)

    Article  Google Scholar 

  2. FAOSTAT: Food and agricultural commodities production. Final 2013 data, http://faostat3.fao.org/home/E (2013)

  3. Gaafar, A.A., Salama, Z.A.: Phenolic compounds from artichoke (Cynara scolymus L.) byproducts and their antimicrobial activities. J. Biol. Agric. Healthc. 3(12), 1–7 (2013)

    Google Scholar 

  4. Santo Domingo, C., Soria, M., Rojas, A.M., Fissore, E.N., Gerschenson, L.N.: Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. Int. J. Mol. Sci. 16, 6057–6075 (2015)

    Article  Google Scholar 

  5. Machado, M.T.C., Ec, K.S., Vieira, G.S., Menegalli, F.C., Martínez, J., Hubinger, M.D.: Prebiotic oligosaccharides from artichoke industrial waste: evaluation of different extraction methods. Ind. Crop Prod. 76, 141–148 (2015)

    Article  Google Scholar 

  6. Pandino, G., Lombardo, S., Mauromicale, G.: Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind. Crop Prod. 44, 44–49 (2013)

    Article  Google Scholar 

  7. Lattanzio, V., Kroon, P.A., Linsalata, V., Cardinali, A.: Globe artichoke: a functional food and source of nutraceutical ingredients. J. Funct. Food 1, 131–134 (2009)

    Article  Google Scholar 

  8. Lombardo, S., Pandino, G., Mauromicale, G., Knödler, M., Carle, R., Schieber, A.: Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 119, 1175–1181 (2010)

    Article  Google Scholar 

  9. Rouphael, Y., Bernardi, J., Cardarelli, M., Bernardo, L., Kane, D., Colla, G., Lucini, L.: Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars. J. Agric. Food Chem. 16, 8540–8548 (2016)

    Article  Google Scholar 

  10. Rouphael, Y., Colla, G., Graziani, G., Ritieni, A., Cardarelli, M., De Pascale, S.: Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 234, 10–19 (2017)

    Article  Google Scholar 

  11. Colla, G., Rouphael, Y., Cardarelli, M., Svecova, E., Rea, E., Lucini, L.: Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 93, 1119–1127 (2013)

    Article  Google Scholar 

  12. Negro, D., Montesano, V., Grieco, S., Crupi, P., Sarli, G., De Lisi, A., Sonnante, G.: Polyphenol compounds in artichoke plant tissues and varieties. J. Food Sci. 77, C244–C252 (2012)

    Article  Google Scholar 

  13. Kuczmannová, A., Gál, P., Varinská, L., Treml, J., Ková, I., Novotný, M., Vasilenko, T., Dall’Acqua, S., Nagy, M., Mucaji, P.: Agrimonia eupatoria L. and Cynara cardunculus L. water infusions: phenolic profile and comparison of antioxidant activities. Molecules 20, 20538–20550 (2015)

    Article  Google Scholar 

  14. Afifi, N., Ramadan, A., Yassin, N.Z., Fayed, H.M., Abdel-Rahman, R.F.: Molecular mechanisms underlying hepatoprotective effect of artichoke extract: modulates TNF-induced activation of nuclear transcription factor (NF-Kappa β) and oxidative burst inhibition. World J. Pharm. Pharm. Sci. 4, 1546–1562 (2016)

    Google Scholar 

  15. Mohamed, S.H., Ahmed, H.H., Farrag, A.R.H., Abdel-Azim, N.S., Shahat, A.A.: Cynara scolymus for relieving on nonalcoholic steatohepatitis induced in rats. Int. J. Pharm. Pharm. Sci. 5, 57–66 (2013)

    Google Scholar 

  16. Chemat, F., Vian, M.A., Cravotto, G.: Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 13, 8615–8627 (2012)

    Article  Google Scholar 

  17. Zuorro, A.: Response surface methodology analysis of polyphenol recovery from artichoke waste. Am. J. Appl. Sci. 11, 1463–1471 (2014)

    Article  Google Scholar 

  18. Zuorro, A., Maffei, G., Lavecchia, R.: Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 111, 279–284 (2016)

    Article  Google Scholar 

  19. Lavecchia, R., Zuorro, A.: Evaluation of olive pomace as a source of phenolic antioxidants for the production of functional cosmetics. Int. J. Appl. Eng. Res. 14, 34405–34409 (2015)

    Google Scholar 

  20. Zuorro, A., Lavecchia, R.: Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J. Clean. Prod. 34, 49–56 (2012)

    Article  Google Scholar 

  21. Zhishen, J., Mengcheng, T., Jianming, W.: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999)

    Article  Google Scholar 

  22. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995)

    Article  Google Scholar 

  23. Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., Domínguez, H.: Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114, 806–812 (2009)

    Article  Google Scholar 

  24. Fiore, V., Valenza, A., Di Bella, G.: Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71, 1138–1144 (2011)

    Article  Google Scholar 

  25. Peres, R.S., Armelin, E., Alemán, C., Ferreira, C.A.: Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment. Ind. Crop Prod. 65, 506–514 (2015)

    Article  Google Scholar 

  26. Cheng, D., Jiang, S., Zhang, Q.: Effect of hydrothermal treatment with different aqueous solutions on the mold resistance of bamboo with chemical and FTIR analysis. Bioresources 8(1), 371–382 (2013)

    Google Scholar 

  27. Kyraleou, M., Pappas, C., Voskidi, E., Kotseridis, Y., Basalekou, M., Tarantilis, P.A., Kallithraka, S.: Diffuse reflectance Fourier transform infrared spectroscopy for simultaneous quantification of total phenolics and condensed tannins contained in grape seeds. Ind. Crop Prod. 74, 784–791 (2015)

    Article  Google Scholar 

  28. Liang, N., Lu, X., Hu, Y., Kitts, D.D.: Application of attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. J. Agric. Food Chem. 64, 681–689 (2016)

    Article  Google Scholar 

  29. Tortosa Masiá, A.A., Buhre, B.J.P., Gupta, R.P., Wall, T.F.: Characterising ash of biomass and waste. Fuel Process. Technol. 88, 1071–1081 (2007)

    Article  Google Scholar 

  30. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Biorersour. Technol. 103, 249–258 (2012)

    Article  Google Scholar 

  31. Lutz, M., Henriquez, C., Escobar, R.: Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Compos. Anal. 24, 49–54 (2011)

    Article  Google Scholar 

  32. Ledda, L., Deligios, P.A., Farci, R., Sulas, L.: Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crop Prod. 47, 218–226 (2013)

    Article  Google Scholar 

  33. Mackenzie, R.C.: Differential thermal analysis, vol. 2. Academic press, New York (1972)

    Google Scholar 

  34. Zuorro, A., Maffei, G., Lavecchia, R.: Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chem. Eng. Trans. 39, 463–468 (2014)

    Google Scholar 

  35. Pandino, G., Lombardo, S., Mauromicale, G., Williamson, G.: Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J. Food Compos. Anal. 24, 148–153 (2011)

    Article  Google Scholar 

  36. Dabbou, S., Dabbou, S., Flamini, G., Pandino, G., Gasco, L., Helal, A.N.: Phytochemical compounds from the crop byproducts of Tunisian globe artichoke cultivars. Chem. Biodivers. 13, 1475–1483 (2016)

    Article  Google Scholar 

  37. Zuorro, A.: Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Sep. Purif. Technol. 152, 64–69 (2015)

    Article  Google Scholar 

  38. Damartzis, T., Vamvuka, D., Sfakiotakis, S., Zabaniotou, A.: Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour. Technol. 102, 6230–6238 (2011)

    Article  Google Scholar 

  39. Femenia, A., Robertson, J.A., Waldron, K.W., Selvendran, R.R.: Cauliflower (Brassica oleracea L.), globe artichoke (Cynara scolymus) and chicory witloof (Cichorium intybus) processing by-products as sources of dietary fibre. J. Sci. Food Agric. 77, 511–518 (1998)

    Article  Google Scholar 

  40. Meng, A., Chen, S., Long, Y., Zhou, H., Zhang, Y., Li, Q.: Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manage. 46, 247–256 (2015)

    Article  Google Scholar 

  41. Doshi, P., Srivastava, G., Pathak, G., Dikshit, M.: Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel. Waste Manage. 34, 1836–1846 (2014)

    Article  Google Scholar 

  42. Vamvuka, D., Sfakiotakis, S.: Combustion behavior of biomass fuels and their blends with lignite. Thermochim. Acta 526, 192–199 (2011)

    Article  Google Scholar 

  43. Wildschut, J., Smit, A.T., Reith, J.H., Huijgen, W.J.J.: Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour. Technol. 135, 58–66 (2013)

    Article  Google Scholar 

  44. Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S.: A review on biomass as a fuel for boilers. Renew. Sust. Energ. Rev. 15, 2262–2289 (2011)

    Article  Google Scholar 

  45. Nzihou, A., Stanmore, B.R.: The formation of aerosols during the co-combustion of coal and biomass. Waste Biomass Valor. 6, 947–957 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Lavecchia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavecchia, R., Maffei, G., Paccassoni, F. et al. Artichoke Waste as a Source of Phenolic Antioxidants and Bioenergy. Waste Biomass Valor 10, 2975–2984 (2019). https://doi.org/10.1007/s12649-018-0305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0305-y

Keywords

Navigation