Advertisement

Carbon Footprint Associated with Firewood Consumption in Northeast Brazil: An Analysis by the IPCC 2013 GWP 100y Criterion

  • Luiz Moreira Coelho Junior
  • Kalyne de Lourdes da Costa Martins
  • Monica Carvalho
Original Paper

Abstract

Firewood is commonly used in developing regions, mainly as a primary energy source. This study quantified and analyzed the carbon footprint associated with firewood consumption in the Brazilian Northeast. The Life Cycle Assessment methodology was applied, using the IPCC GWP 100y environmental impact assessment method and EcoInvent database, within software SimaPro. Forest product harvesting (extractivism) and silviculture were compared from available data (1994 and 2013). The results revealed that the burning of firewood from extractivism presented a higher carbon footprint than silviculture: 16 versus 10 kg CO2-eq/m3, respectively. The Rio Grande do Norte state presented the highest carbon footprint per area associated with extractivism and silviculture, for the year 1994. Considering the most recent available 2013 data, the highest carbon footprints per area associated with extractivism and silviculture were, respectively, for the Ceará and Bahia states. Quantification of carbon footprints are crucial to monitor progress in climate change mitigation, and can be utilized to build inventories, which are important for policy formulation and implementation.

Keywords

Bioenergy Wood fuel Forest biomass Firewood Carbon footprint Life cycle assessment 

Notes

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 475879/2013-9, 454830/2014-9, 303199/2015-6).

References

  1. 1.
    Moreira, J.M.M.A.P.: Potential and participation of forests in the energy matriz [Potencial e participação das florestas na matriz energética]. Pesq. Flor. Bras. (2011).  https://doi.org/10.4336/2011.pfb.31.68.363 Google Scholar
  2. 2.
    Brito, J.O.: The energy use of wood [O uso energético da madeira]. Estud. av. (2007).  https://doi.org/10.1590/S0103-40142007000100015 Google Scholar
  3. 3.
    Muniz, R.N.: Education and biomass [Educação e Biomassa]. In: Encontro de Energia no Meio Rural, 4., 2002, Campinas. Proceedings… http://www.proceedings.scielo.br/scielo.php?pid=MSC0000000022002000100053&script=sci_arttext (2002). Accessed 18 Apr 2015
  4. 4.
    Murray, C.H., Montalembert, M.R.: Wood, still a neglected energy source. Energy Policy (1992).  https://doi.org/10.1016/0301-4215(92)90018-W Google Scholar
  5. 5.
    Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature (2001).  https://doi.org/10.1038/35104599 Google Scholar
  6. 6.
    Gokcol, C., Dursun, B., Alboyaci, B., Sunan, E.: Importance of biomass energy as alternative to other sources in Turkey. Energy Policy (2009).  https://doi.org/10.1016/j.enpol.2008.09.057 Google Scholar
  7. 7.
    Viana, H., Cohen, W.B., Lopes, D., Aranha, J.: Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy (2010).  https://doi.org/10.1016/j.apenergy.2010.02.007 Google Scholar
  8. 8.
    Lauri, P., Havlík, P., Kindermann, G., Forsell, N., Böttcher, H., Obersteiner, M.: Woody biomass energy potential in 2050. Energy Policy (2014).  https://doi.org/10.1016/j.enpol.2013.11.033 Google Scholar
  9. 9.
    Bhattacharya, S.C.: Wood energy in India: Status and prospects. Energy (2015).  https://doi.org/10.1016/j.energy.2015.03.043 Google Scholar
  10. 10.
    Gustavsson, L., Haus, S., Ortiz, C.A., Sathre, R., Le Truong, N.: Climate effects of bioenergy from forest residues in comparison to fossil energy. Appl. Energy (2015).  https://doi.org/10.1016/j.apenergy.2014.10.013 Google Scholar
  11. 11.
    Nishiguchi, S., Tabata, T.: Assessment of social, economic, and environmental aspects of woody biomass energy utilization: direct burning and wood pellets. Renew. Sustain. Energy Rev. (2016).  https://doi.org/10.1016/j.rser.2015.12.213 Google Scholar
  12. 12.
    Fitzpatrick, J.J.: Environmental sustainability assessment of using forest wood for heat energy in Ireland. Renew. Sustain. Energy Rev. (2016).  https://doi.org/10.1016/j.rser.2015.12.197 Google Scholar
  13. 13.
    Colin, A., Pilate, M., Py, N., Thivolle-Cazat, A., Bouvet, A., Rantien, C., Buitrago, M., Mousset, J.: Forest availabilities for energy and materials by 2035. (INIS-FR–16-0558). France. https://inis.iaea.org/search/search.aspx?orig_q=RN:47069810 (2016). Accessed 06 Feb 2018
  14. 14.
    Dessbesell, L., Farias, J.A.D., Roesch, F.: Complementing firewood with alternative energy sources in Rio Pardo Watershed, Brazil. Ciência Rural (2017).  https://doi.org/10.1590/0103-8478cr20151216 Google Scholar
  15. 15.
    Hayashi, T., Sawauchi, D., Kunii, D.: Forest maintenance practices and wood energy alternatives to increase uses of forest resources in a local initiative in Nishiwaga, Iwate, Japan. Sustainability (2017).  https://doi.org/10.3390/su9111949 Google Scholar
  16. 16.
    Kilpeläinen, A., Strandman, H., Grönholm, T., Ikonen, V.P., Torssonen, P., Kellomäki, S., Peltola, H.: Effects of initial age structure of managed Norway spruce forest area on net climate impact of using forest biomass for energy. Bioenergy Res. (2017).  https://doi.org/10.1007/s12155-017-9821-z Google Scholar
  17. 17.
    Araújo, Y.R.V., Góis, M.L., Coelho Junior, L.M., Carvalho, M.: Carbon footprint associated with four disposal scenarios for urban pruning waste. Environ. Sci. Pollut. Res. (2018).  https://doi.org/10.1007/s11356-017-0613-y Google Scholar
  18. 18.
    Zubi, G., Spertino, F., Carvalho, M., Adhikari, R.S., Khatib, T.: Development and assessment of a solar home system to cover cooking and lighting needs in developing regions as a better alternative for existing practices. Sol. Energy (2017).  https://doi.org/10.1016/j.solener.2017.05.077 Google Scholar
  19. 19.
    EMPRESA DE PESQUISA ENERGÉTICA (EPE). National Energy Balance 2014 [Balanço Energético Nacional 2014Ano base 2013]. Rio de Janeiro. https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2014.pdf (2017). Accessed 10 July 2017
  20. 20.
    FEARNSIDE, P.M.: Deforestation in the Brazilian Amazon: history, indices and consequences [Desmatamento na Amazônia Brasileira: história, índices e consequências]. Megadiversidade 1, 113–123 (2005)Google Scholar
  21. 21.
    Campello, F.B., Gariglio, M.A., Silva, J.A., Leal, A.M.A.: Forest diagnosis for the Northeast region [Diagnóstico Florestal da Região Nordeste]. Projeto Desenvolvimento Florestal para o Nordeste do Brasil (Projeto IBAMA/PNUD/BRA/93/033). Ibama, Brasília (1999)Google Scholar
  22. 22.
    Coelho Junior, L.M.: Economic analysis of forestry products in conditions of uncertainty and risk [Análise econômica de produtos florestais em condições de risco e incerteza]. 206 f. Tese (Doutorado em Engenharia Florestal), Universidade Federal de Lavras, Lavras (2010)Google Scholar
  23. 23.
    Brazilian Agency of Electricity (ANEEL). Brazilian Electricity Atlas. Chapter 5: availability of resources and consumption of biomass. http://www2.aneel.gov.br/aplicacoes/atlas/biomassa/5_2.htm (2017) Accessed 10 July 2017
  24. 24.
    Paraíba. Superintendência de Administração do Meio Ambiente (Sudema). Update on the forest diagnosis of Paraíba State [Atualização do Diagnóstico Florestal do Estado da Paraíba]. Sudema, João Pessoa (2004)Google Scholar
  25. 25.
    Delgado, D.B.M., Carvalho, M., Coelho Junior, L.M., Chacartegui, R.: Analysis of biomass-fired boilers in a polygeneration system for a hospital. Front. Manag. Res. (2018).  https://doi.org/10.22606/fmr.2018.21001 Google Scholar
  26. 26.
    Fehrenbach, H.: Life cycle assessment of the use of solid biomass for electricity. http://iet.jrc.ec.europa.eu/remea/sites/remea/files/files/documents/events/fehrenbach.pdf (2013). Accessed 25 July 2017
  27. 27.
    Neves, T.I., Uyeda, C.A., Carvalho, M., Abrahão, R.: Environmental evaluation of the life cycle of elephant grass fertilization—Cenchrus purpureus (Schumach.) Morrone—using chemical fertilization and biosolids. Environ. Monit. Assess. (2018).  https://doi.org/10.1007/s10661-017-6406-4 Google Scholar
  28. 28.
    Carvalho, M., Abrahão, R.: Environmental and economic perspectives in the analysis of two options for hand drying. Int. J. Emerg. Res. Manag. Technol. 7, 24–35 (2017)CrossRefGoogle Scholar
  29. 29.
    Carvalho, M., Grilo, M.M.D.S., Abrahão, R.: Comparison of greenhouse gas emissions relative to two frying processes for homemade potato chips. Environ. Prog. Sustain. Energy (2017).  https://doi.org/10.1002/ep.12661 Google Scholar
  30. 30.
    Carvalho, M., Delgado, D.B.M.: Potential of photovoltaic solar energy to reduce the carbon footprint of the Brazilian electricity matrix. LALCA 1, 64–85 (2017)CrossRefGoogle Scholar
  31. 31.
    Abrahão, R., Carvalho, M.: Environmental impacts of the red ceramics industry in Northeast Brazil. Int. J. Emerg. Res. Manag. Technol. 6, 310–317 (2017)Google Scholar
  32. 32.
    Carvalho, M., Silva, E.S., Andersen, S.L., Abrahão, R.: Life cycle assessment of the transesterification double step process for biodiesel production from refined soybean oil in Brazil. Environ. Sci. Pollut. Res. (2016).  https://doi.org/10.1007/s11356-016-6295-z Google Scholar
  33. 33.
    Abrahão, R., Carvalho, M., Causapé, J.: Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain. Environ. Sci. Pollut. Res. (2017).  https://doi.org/10.1007/s11356-016-8322-5 Google Scholar
  34. 34.
    Lozano, M.A., Carvalho, M., Serra, L.M.: Tackling environmental impacts in simple trigeneration systems operating under variable conditions. Int. J. Life Cycle Assess. (2014)  https://doi.org/10.1007/s11367-014-0719-0 Google Scholar
  35. 35.
    Guinée, J.B.: Life Cycle Assessment: An Operational Guide to the ISO Standards. Leiden University, Leiden (2001)Google Scholar
  36. 36.
    Guinée, J.B.: Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Kluwer Academic Publishers, Boston (2002)Google Scholar
  37. 37.
    Fortună, M.E., Simion, I.M., Gavrilescu, M.: Assessment of sustainability based on LCA—case of woody biomass. Cellul. Chem. Technol. 46, 493–510 (2012)Google Scholar
  38. 38.
    Périlhon, C., Alkadee, D., Descombes, G., Lacour, S.: Life cycle assessment applied to electricity generation from renewable biomass. Energy Procedia (2012).  https://doi.org/10.1016/j.egypro.2012.05.028 Google Scholar
  39. 39.
    Roger, A.S.: Comparative life cycle assessments: carbon neutrality and wood biomass energy. Resources, Discussion Paper, RFF DP 13-11. http://www.rff.org/files/sharepoint/WorkImages/Download/RFF-DP-13-11.pdf (2013). Accessed 25 July 2017
  40. 40.
    Zhang, F., Johnson, D.M., Wang, J.: Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan. Energies (2015)  https://doi.org/10.3390/en8043258 Google Scholar
  41. 41.
    Vasquez Sandoval, M.A.: Life cycle assessment of biomass for generation of energy: case studies of poplar management in the Pacific Northwest of the USA (Doctoral dissertation): (2015)Google Scholar
  42. 42.
    Huisenga, M., Nwaneshiudu, I.C., Pierobon, F., Johnston, G., Bowers, T.C., Chen, C., Sifford, C., Huisenga, M., Johnston, G.: Life cycle analysis of residual woody biomass-based biofuel. https://nararenewables.org/documents/2017/04/life-cycle-analysis-of-residual-woody-biomass-based-biofuel.pdf/ (2016). Accessed 05 Feb 2018
  43. 43.
    Valente, C., Spinelli, R., Hillring, B.G.: LCA of environmental and socio-economic impacts related to wood energy production in alpine conditions: Valle di Fiemme (Italy). J. Clean. Prod. (2011).  https://doi.org/10.1016/j.jclepro.2011.06.026 Google Scholar
  44. 44.
    Lamers, P., Junginger, M.: The ‘debt’is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod. Biorefin. (2013).  https://doi.org/10.1002/bbb.1407 Google Scholar
  45. 45.
    Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S.: Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour. Conserv. Recycl. (2009).  https://doi.org/10.1016/j.resconrec.2009.03.013 Google Scholar
  46. 46.
    Rabl, A., Benoist, A., Dron, D., Peuportier, B., Spadaro, J.V., Zoughaib, A.: How to account for CO2 emissions from biomass in an LCA. Int. J. Life Cycle Assess. (2007).  https://doi.org/10.1065/lca2007.06.347 Google Scholar
  47. 47.
    Horn, R.: Brazil: equitable, competitive, sustainable-contributions for debate. World Bank. http://documents.worldbank.org/curated/pt/845061468769786578/Brazil-equitable-competitive-sustainable-contributions-for-debate (2002). Accessed 05 Feb 2018
  48. 48.
    Nyland, R.D.: Silviculture: Concepts and Applications. Waveland Press, Long Grove (2016)Google Scholar
  49. 49.
    Miranda, G.: Energy potential of three forest species in the semi-arid region of Northeast Brazil [Potencial Energético de Três Espécies Florestais da Região Semi-Árida do Nordeste do Brasil]. 1989. M.Sc. dissertation (M.Sc. in Forestry Engineering), Universidade Federal do Paraná, Curitiba (1989)Google Scholar
  50. 50.
    Vale, A.T., Brasil, M.A.P., Carvalho, C.M., Veiga, R.A.A.: Production of energy from Eucalyptus grandis Hill Ex-Maiden e Acacia mangium Willd in different fertilization levels [Produção de energia do fuste de Eucalyptus grandis Hill Ex-Maiden e Acacia mangium Willd em diferentes níveis de adubação]. Cerne 6, 083–088 (2000)Google Scholar
  51. 51.
    Paes, J.B., Lima, C.R., Oliveira, E., Medeiros Neto, P.N.: Physical-Chemical, energetic characteristics and fiber dimensions of three forestry species of Brazilian semi-arid region [Características Físico-Química, Energética e Dimensões das fibras de Três Espécies florestais do Semi-Árido Brasileiro]. Floresta Ambient (2013).  https://doi.org/10.4322/floram.2013.022 Google Scholar
  52. 52.
    Brito, J.O., Barrichelo, L.E.G.: Characteristics of Eucaliptus as a fuel: immediate chemical analysis of wood and bark. [Características do Eucalipto como combustível: Análise química imediata da madeira e da casca]. IPEF 16, 63–70 (1978)Google Scholar
  53. 53.
    ISO 14040. Environmental Management: Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO), Geneva (2006)Google Scholar
  54. 54.
    ISO 14044. Environmental Management: Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization (ISO), Geneva, (2006)Google Scholar
  55. 55.
    Klöpffer, W.: The critical review of life cycle assessment studies according to ISO 14040 and 14044: origin, purpose and practical performance. Int. J. Life Cycle Assess. (2012).  https://doi.org/10.1007/s11367-012-0426-7 Google Scholar
  56. 56.
    Préconsultants. Software SimaPro. 2014. http://www.pre.nl/simapro (2015). Accessed 04 Feb 2018
  57. 57.
    Ecoinvent. The ecoinvent database. http://www.ecoinvent.org/ (2015). Accessed 04 Feb 2018
  58. 58.
    IPCC: Revised supplementary methods and good practice guidance arising from the Kyoto protocol, Intergovernmental Panel on Climate Change. http://www.ipcc-nggip.iges.or.jp/public/kpsg/ (2013). Accessed 04 Feb 2018
  59. 59.
    Houghton, J.T., Jenkins, G.J., Ephraums, J.J. (eds.): Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge (1990)Google Scholar
  60. 60.
    Grilo, M.M.S., Fortes, A.F.C., Souza, R.P.G., Silva, J.A.M., Carvalho, M.: Carbon footprints for the supply of electricity to a heat pump: solar energy vs. electric grid. J. Renew. Sustain. Energy 10, 023701Google Scholar
  61. 61.
    Lucier, A., Miner, R.: Biomass carbon neutrality in the context of forest—based fuels and products. (2010). Accessed 28 Mar 2018Google Scholar
  62. 62.
    Thornley, P., Gilbert, P., Shackley, S., Hammond, J.: Maximizing the greenhouse gas reductions from biomass: the role of life cycle assessment. Biomass Bioenergy (2015).  https://doi.org/10.1016/j.biombioe.2015.05.002 Google Scholar
  63. 63.
    Change, I.C.: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2014)Google Scholar
  64. 64.
    Woods Hole Research Center/Letter to the Senate on carbon neutrality of forest biomass. http://whrc.org/letter-to-the-senate-on-carbon-neutrality/ (2016). Accessed 04 Feb 2018
  65. 65.
    Brazilian Institute of Geography and Statistics (IBGE). Sidra. http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp (2017). Accessed 04 Feb 2018
  66. 66.
    Brazilian Institute of Geography and Statistics (IBGE). Production of Extractivism and Silviculture. IBGE, Rio de Janeiro (2013)Google Scholar
  67. 67.
    Paul, K.I., Booth, T.H., Elliott, A., Kirschbaum, M.U.F., Jovanovic, T., Polglase, P.J.: Net carbon dioxide emissions from alternative firewood-production systems in Australia. Biomass Bioenergy (2006).  https://doi.org/10.1016/j.biombioe.2006.01.004 Google Scholar
  68. 68.
    Robinson, D.L.: Australian wood heaters currently increase global warming and health costs. Atmos. Pollut. Res. (2011).  https://doi.org/10.5094/APR.2011.033 Google Scholar
  69. 69.
    Markewitz, D.: Fossil fuel carbon emissions from silviculture: Impacts on net carbon sequestration in forests. For. Ecol. Manag. (2006)  https://doi.org/10.1016/j.foreco.2006.08.343 Google Scholar
  70. 70.
    Marcotullio, P.J., Sarzynski, A., Albrecht, J., Schulz, N.: A top-down regional assessment of urban greenhouse gas emissions in Europe. Ambio (2014).  https://doi.org/10.1007/s13280-013-0467-6 Google Scholar
  71. 71.
    Stokes, B., Wike, R., Carle, J.: Concern about climate change and its consequences. Pew Research Center. http://www.pewglobal.org/2015/11/05/1-concern-about-climate-change-and-its-consequences/ (2015). Accessed 05 Feb 2018
  72. 72.
    Marland, G., Schlamadinger, B.: Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass Bioenergy (1997).  https://doi.org/10.1016/S0961-9534(97)00027-5 Google Scholar
  73. 73.
    Krug, T.: GHG inventories: their importance to monitor progress in climate change mitigation. IPCC Open Symposium Okinawa, 16 March 2015. https://www.iges.or.jp/files/research/alliges/pdf/20150316/7_e_Naha_Inventories&Mitigation_TK.pdf (2015). Accessed 07 Feb 2018
  74. 74.
    Government of Ghana. National Greenhouse Gas Inventory Report. Ghana government submission to the United Nations Framework Convention on Climate Change, 2015. https://unfccc.int/files/national_reports/non-annex_i_parties/biennial_update_reports/application/pdf/nir1_to_bur1_ghana.pdf (2014). Accessed 05 Feb 2018
  75. 75.
    Kauffmann, C., Tébar Less, C., Teichmann, D.: Corporate Greenhouse Gas Emission Reporting: A Stocktaking of Government Schemes. OECD Publishing, Paris (2012).  https://doi.org/10.1787/5k97g3x674lq-en CrossRefGoogle Scholar
  76. 76.
    World Resources Institute. Policy and Action Standard: an accounting and reporting standard for estimating the greenhouse gas effects of policies and actions. World Resources Institute, USA. https://www.transparency-partnership.net/documents-tools/policy-and-action-standard-accounting-and-reporting-standard-estimating-greenhouse (2014). Accessed 05 Feb 2018
  77. 77.
    Santana Freire, R., Carvalho, M., Montreuil Carmona, C.U., Brito, A.M.V.G.: Perspectives on the implementation of climate change public policies in Brazil. In: Grammelis, P. (ed.) Energy, Transportation and Global Warming. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30127-3_2 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Alternative and Renewable EnergyFederal University of Paraíba (UFPB), Campus IJoão PessoaBrazil

Personalised recommendations