Skip to main content
Log in

Valorization of Vanillyl Alcohol by Pigments: Prussian Blue Analogue as a Highly-Effective Heterogeneous Catalyst for Aerobic Oxidation of Vanillyl Alcohol to Vanillin

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Prussian blue analogues (PBA), a class of metal-coordinated frameworks, are proposed in this study for aerobic oxidation of a lignin model compound, vanillyl alcohol (VAL), to the valuable product, vanillin (VN). While different metals and hexacyano-metalates are used to prepare various PBAs, the prototype PBA (Fe3[Fe(CN)6]2 abbreviated as “FeFe”) exhibited the highest catalytic activity towards VAL conversion to VN. The kinetics of VAL conversion is determined and the production of VN is also analyzed using the pseudo first order rate law. In addition, FeFe exhibits the highest catalytic activity to convert VAL to VN with the highest production and selectivity compared to the reported heterogeneous catalysts. FeFe can be also re-used to catalyze conversion of VAL to VN without significant activity loss. These features indicate that FeFe, as an easy-to-obtain and non-toxic pigment, is a promising catalyst for aerobic oxidation of VAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DTIC Document (2005)

  2. Behling, R., Valange, S., Chatel, G.: Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18, 1839–1854 (2016)

    Article  Google Scholar 

  3. Lange, H., Decina, S., Crestini, C.: Oxidative upgrade of lignin—recent routes reviewed. Eur. Polym. J. 49, 1151–1173 (2013)

    Article  Google Scholar 

  4. Azarpira, A., Ralph, J., Lu, F.: Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res. 7, 78–86 (2014)

    Article  Google Scholar 

  5. Dai, J., Patti, A.F., Saito, K.: Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett. 57, 4945–4951 (2016)

    Article  Google Scholar 

  6. Pan, J., Fu, J., Lu, X.: Microwave-assisted oxidative degradation of lignin model compounds with metal salts. Energy Fuels 29, 4503–4509 (2015)

    Article  Google Scholar 

  7. Bulushev, D.A., Ross, J.R.H.: Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal. Today 171, 1–13 (2011)

    Article  Google Scholar 

  8. Yokoyama, S. (ed.): Thermochemical conversion of biomass. In: Asia Biomass Handbook: A Guide for Biomass Production and Utilization, The Japan Institute of Energy, Tokyo (2008)

  9. Jha, A., Patil, K.R., Rode, C.V.: Mixed Co–Mn oxide-catalysed selective aerobic oxidation of vanillyl alcohol to vanillin in base-free conditions. ChemPlusChem 78, 1384–1392 (2013)

    Article  Google Scholar 

  10. Jha, A., Rode, C.V.: Highly selective liquid-phase aerobic oxidation of vanillyl alcohol to vanillin on cobalt oxide (Co3O4) nanoparticles. New J. Chem. 37, 2669–2674 (2013)

    Article  Google Scholar 

  11. Saha, S., Hamid, S.B.A., Ali, T.H.: Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide. Appl. Surf. Sci. 394, 205–218 (2017)

    Article  Google Scholar 

  12. Jha, A., Mhamane, D., Suryawanshi, A., Joshi, S.M., Shaikh, P., Biradar, N., Ogale, S., Rode, C.V.: Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catal. Sci. Technol. 4, 1771–1778 (2014)

    Article  Google Scholar 

  13. Yuan, Z., Chen, S., Liu, B.: Nitrogen-doped reduced graphene oxide-supported Mn3O4: an efficient heterogeneous catalyst for the oxidation of vanillyl alcohol to vanillin. J. Mater. Sci. 52, 164–172 (2017)

    Article  Google Scholar 

  14. Tarasov, A.L., Kustov, L.M., Bogolyubov, A.A., Kiselyov, A.S., Semenov, V.V.: New and efficient procedure for the oxidation of dioxybenzylic alcohols into aldehydes with Pt and Pd-based catalysts under flow reactor conditions. Appl. Catal. A 366, 227–231 (2009)

    Article  Google Scholar 

  15. Ramana, S., Rao, B.G., Venkataswamy, P., Rangaswamy, A., Reddy, B.M.: Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol. J. Mol. Catal. A 415, 113–121 (2016)

    Article  Google Scholar 

  16. Behling, R., Chatel, G., Valange, S.: Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrason. Sonochem. 36, 27–35 (2017)

    Article  Google Scholar 

  17. Fache, M., Boutevin, B., Caillol, S.: Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016)

    Article  Google Scholar 

  18. Jiang, J.-A., Chen, C., Guo, Y., Liao, D.-H., Pan, X.-D., Ji, Y.-F.: A highly efficient approach to vanillin starting from 4-cresol. Green Chem. 16, 2807–2814 (2014)

    Article  Google Scholar 

  19. Yepez, R., Garcia, S., Schachat, P., Sanchez-Sanchez, M., Gonzalez-Estefan, J.H., Gonzalez-Zamora, E., Ibarra, I.A., Aguilar-Pliego, J.: Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New J. Chem. 39, 5112–5115 (2015)

    Article  Google Scholar 

  20. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)

    Article  Google Scholar 

  21. Makwana, V.D., Son, Y.-C., Howell, A.R., Suib, S.L.: The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J. Catal. 210, 46–52 (2002)

    Article  Google Scholar 

  22. Kshirsagar, V.S., Garade, A.C., Patil, K.R., Shirai, M., Rode, C.V.: Liquid phase oxidation of p-cresol over cobalt saponite. Top. Catal. 52, 784–788 (2009)

    Article  Google Scholar 

  23. Behera, G.C., Parida, K.M.: Liquid phase catalytic oxidation of benzyl alcohol to benzaldehyde over vanadium phosphate catalyst., Appl. Catal. A 413–414, 245–253 (2012)

    Article  Google Scholar 

  24. Mishra, D.K., Dabbawala, A.A., Park, J.J., Jhung, S.H., Hwang, J.-S.: Selective hydrogenation of d-glucose to d-sorbitol over HY zeolite supported ruthenium nanoparticles catalysts. Catal. Today 232, 99–107 (2014)

    Article  Google Scholar 

  25. Zakzeski, J., Jongerius, A.L., Weckhuysen, B.M.: Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem. 12, 1225–1236 (2010)

    Article  Google Scholar 

  26. Berrie, B.: Prussian Blue. National Gallery of Art, Washington (1997)

    Google Scholar 

  27. Questions and Answers on Prussian Blue, in: T.F.a.D.A. (FDA) (ed.), U.S. Food and Drug Administration, Silver Spring, MD (USA), 2003

  28. WHO, WHO Model List of Essential Medicines, in: W.E.C.o.t.S.a.U.o.E. Medicines (ed.), WHO, Geneva, 2014

  29. Torad, N.L., Hu, M., Imura, M., Naito, M., Yamauchi, Y.: Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J. Mater. Chem. 22, 18261–18267 (2012)

    Article  Google Scholar 

  30. M. M, S.P., Rd, O.N., R. R, L.-L.P., Jl, G.-M.: Prussian blue and analogues: biosensing applications in health care. In: Tiwari, A., Nordin, A.N. (eds.) Advanced Biomaterials and Biodevices. Wiley, Hoboken (2014)

    Google Scholar 

  31. Yue, Y., Binder, A.J., Guo, B., Zhang, Z., Qiao, Z.-A., Tian, C., Dai, S.: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53, 3134–3137 (2014)

    Article  Google Scholar 

  32. Karadas, F., El-Faki, H., Deniz, E., Yavuz, C.T., Aparicio, S., Atilhan, M.: CO2 adsorption studies on Prussian blue analogues. Microporous Mesoporous Mater. 162, 91–97 (2012)

    Article  Google Scholar 

  33. Liang, Y., Yi, C., Tricard, S., Fang, J., Zhao, J., Shen, W.: Prussian blue analogues as heterogeneous catalysts for epoxidation of styrene. RSC Adv. 5, 17993–17999 (2015)

    Article  Google Scholar 

  34. Lin, K.-Y.A., Chen, B.-J., Chen, C.-K.: Evaluating Prussian blue analogues MII3[MIII(CN)6]2 (MII = Co, Cu, Fe, Mn, Ni; MIII = Co, Fe) as activators for peroxymonosulfate in water. RSC Adv. 6, 92923–92933 (2016)

    Article  Google Scholar 

  35. Kaye, S.S., Long, J.R.: Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)

    Article  Google Scholar 

  36. Li, X., Liu, J., Rykov, A.I., Han, H., Jin, C., Liu, X., Wang, J.: Excellent photo-Fenton catalysts of Fe–Co Prussian blue analogues and their reaction mechanism study. Appl. Catal. B 179, 196–205 (2015)

    Article  Google Scholar 

  37. Aksoy, M., Nune, S.V.K., Karadas, F.: A novel synthetic route for the preparation of an amorphous Co/Fe Prussian blue coordination compound with high electrocatalytic water oxidation activity. Inorg. Chem. 55, 4301–4307 (2016)

    Article  Google Scholar 

  38. Pintado, S., Goberna-Ferrón, S., Escudero-Adán, E.C., Galán-Mascarós, J.R.: Fast and persistent electrocatalytic water oxidation by Co–Fe Prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270–13273 (2013)

    Article  Google Scholar 

  39. Hu, M., Ishihara, S., Ariga, K., Imura, M., Yamauchi, Y.: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chemistry 19, 1882–1885 (2013)

    Article  Google Scholar 

  40. Lin, K.-Y.A., Lai, H.-K., Chen, Z.-Y.: Selective generation of vanillin from catalytic oxidation of a lignin model compound using ZIF-derived carbon-supported cobalt nanocomposite. J. Taiwan Inst. Chem. Eng. 78, 337–343 (2017)

    Article  Google Scholar 

  41. Elamathi, P., Kolli, M.K., Chandrasekar, G.: Catalytic oxidation of vanillyl alcohol using FeMCM-41 nanoporous tubular reactor. Int. J. Nanosci. 17, 1760010 (2018)

    Article  Google Scholar 

  42. Adam, F., Chew, T.-S., Andas, J.: Liquid phase oxidation of acetophenone over rice husk silica vanadium catalyst. Chin. J. Catal. 33, 518–522 (2012)

    Article  Google Scholar 

  43. Singh, A.P., Selvam, T.: Liquid phase oxidation of para-chlorotoluene to para-chlorobenzaldehyde using vanadium silicate molecular sieves. Appl. Catal. A 143, 111–124 (1996)

    Article  Google Scholar 

  44. Lai, H.-K., Chou, Y.-Z., Lee, M.-H., Lin, K.-Y.A.: Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion. Chem. Eng. J. 332, 717–726 (2018)

    Article  Google Scholar 

  45. Shilpy, M., Ehsan, M.A., Ali, T.H., Hamid, S.B.A., Ali, M.E.: Performance of cobalt titanate towards H2O2 based catalytic oxidation of lignin model compound. RSC Adv. 5, 79644–79653 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Yi Andrew Lin.

Additional information

Meng-Wei Zheng and Hong-Kai Lai have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 231 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MW., Lai, HK. & Lin, KY.A. Valorization of Vanillyl Alcohol by Pigments: Prussian Blue Analogue as a Highly-Effective Heterogeneous Catalyst for Aerobic Oxidation of Vanillyl Alcohol to Vanillin. Waste Biomass Valor 10, 2933–2942 (2019). https://doi.org/10.1007/s12649-018-0280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0280-3

Keywords

Navigation