Optimization of Furfural Synthesis from Xylose Using Niobic Acid and Niobium Phosphate as Catalysts

  • Rafael S. de Carvalho
  • Fábio de A. Rodrigues
  • Robson S. Monteiro
  • Wagner L. da Silva Faria
Original Paper


The objective of this work was to observe the significant factors for the dehydration reaction of xylose to furfural and to optimize the processes using experimental design. The studied variables were temperature, time, initial percentage of xylose mass, and catalyst/xylose ratio. Temperature and initial percentage of xylose mass were considered statistically significant, while the maximum point for furfural selectivity was at 160 °C and 2% of initial xylose mass. Using niobic acid and niobium phosphate (1:1) (NbP/NbA), 44.05% xylose conversion and 74.71% furfural selectivity were obtained. The results showed that the mixture of catalysts with Brönsted acid and Lewis acid sites improved the selectivity of furfural from the xylose dehydration reaction. NbP/NbA catalysts were very stable under the investigated condition after 5 continuous recycles.


Furfural Niobium phosphate Niobic acid Xylose dehydration 



The authors thank Companhia Brasileira de Metalurgia e Mineração – Brazil (CBMM) for donating the niobium and CAPES for financial support of the graduate scholarship.


  1. 1.
    Biddy, M.J., Scarlata, C., Kinchin, C.: Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential, NREL Tech. Rep. NREL/TP-5100-65509, p. 131 (2016).
  2. 2.
    Albarelli, J.Q.: Produção de Açúcar e Etanol de Primeira e Segunda Geração: Simulação, Integração Energética e Análise Econômica. University of Campinas, Campinas (2013)Google Scholar
  3. 3.
    Dias, M.O.S., Ensinas, A.V., Nebra, S.A., Maciel Filho, R., Rossell, C.E.V., Maciel, M.R.W.: Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem. Eng. Res. Des. 87(9), 1206–1216 (2009). CrossRefGoogle Scholar
  4. 4.
    União dos Produtores de Bioenergia: Produção Brasileira. (2017)
  5. 5.
    Bozell, J.J., Petersen, G.R.: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s ‘Top 10’ revisited. Green Chem. 12(4), 539 (2010). CrossRefGoogle Scholar
  6. 6.
    Ministério da Indústria, Comércio Exterior e Serviços: Sistema de Análise das Informações de Comércio Exterior. (2017)
  7. 7.
    Corma, A., García, H.: Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 103(11), 4307–4365 (2003). CrossRefGoogle Scholar
  8. 8.
    Li, H., Zhang, Q., Bhadury, P.S., Yang, S.: Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem. 18(5), 547–597 (2014). CrossRefGoogle Scholar
  9. 9.
    Pholjaroen, B., Li, N., Wang, Z., Wang, A., Zhang, T.: Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system. J. Energy Chem. 22, 826–832 (2013). CrossRefGoogle Scholar
  10. 10.
    Zhu, Y., et al.: Monolithic acidic catalysts for the dehydration of xylose into furfural. Catal. Commun. 87, 112–115 (2016). CrossRefGoogle Scholar
  11. 11.
    Machado, G., et al., Literature review on furfural production from lignocellulosic biomass. Nat. Resour. 7(7), 115–129 (2016). Google Scholar
  12. 12.
    Agirrezabal-Telleria, I., García-Sancho, C., Maireles-Torres, P., Arias, P.L.: Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N2 stripping. Chin. J. Catal. 34(7), 1402–1406 (2013). CrossRefGoogle Scholar
  13. 13.
    Bernal, H.G., Galletti, A.M.R., Garbarino, G., Busca, G., Finocchio, E.: NbP catalyst for furfural production: FT IR studies of surface properties. Appl. Catal. A 502, 388–398 (2015). CrossRefGoogle Scholar
  14. 14.
    Takagaki, A., Ohara, M., Nishimura, S., Ebitani, K.: One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem. Lett. 39(8), 838–840 (2010). CrossRefGoogle Scholar
  15. 15.
    Choudhary, V., Sandler, S.I., Vlachos, D.G.: Conversion of xylose to furfural using Lewis and Bronsted acid catalysts in aqueous media. ACS Catal. 2(9), 2022–2028 (2012). CrossRefGoogle Scholar
  16. 16.
    Catrinck, M.N., Ribeiro, E.S., Monteiro, R.S., Ribas, R.M., Barbosa, M.H.P., Teófilo, R.F.: Direct conversion of glucose to 5-hydroxymethylfurfural using a mixture of niobic acid and niobium phosphate as a solid acid catalyst. Fuel 210, 67–74 (2017). CrossRefGoogle Scholar
  17. 17.
    Fang, C., et al.: Production of bio-based furfural from xylose over a recyclable niobium phosphate (NbOPO3) catalyst. Energy Sources A 39(21), 2072–2077 (2017). CrossRefGoogle Scholar
  18. 18.
    Li, X.-C., Zhang, Y., Xia, Y.-J., Hu, B.-C., Zhong, L., Wang, Y.-Q., Lu, G.-Z.: One-pot catalytic conversion of xylose to furfural on mesoporous niobium phosphate. Acta Phys. Chim. Sin. 28, 2349–2354 (2012). Google Scholar
  19. 19.
    Hu, X., Westerhof, R.J.M., Dong, D., Wu, L., Li, C.Z.: Acid-catalyzed conversion of xylose in 20 solvents: insight into interactions of the solvents with xylose, furfural, and the acid catalyst. ACS Sustain. Chem. Eng. (2014). Google Scholar
  20. 20.
    Karinen, R., Vilonen, K., Niemelä, M.: Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4(8), 1002–1016 (2011). CrossRefGoogle Scholar
  21. 21.
    Nakajima, K., et al.: Nb2O5nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J. Am. Chem. Soc. 133(12), 4224–4227 (2011). CrossRefGoogle Scholar
  22. 22.
    Delbecq, F., Wang, Y., Len, C.: Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration. J. Mol. Catal. A 423, 520–525 (2016). CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., et al., Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts. Fuel 139, 301–307 (2015). CrossRefGoogle Scholar
  24. 24.
    Lamminpää, K., Ahola, J., Tanskanen, J.: Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin. Bioresour. Technol. 177, 94–101 (2015). CrossRefGoogle Scholar
  25. 25.
    Suzuki, T., Yokoi, T., Otomo, R., Kondo, J.N., Tatsumi, T.: Dehydration of xylose over sulfated tin oxide catalyst: influences of the preparation conditions on the structural properties and catalytic performance. Appl. Catal. A 408(1–2), 117–124 (2011). CrossRefGoogle Scholar
  26. 26.
    Yang, Y., Hu, C.W., Abu-Omar, M.M.: Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem 5(2), 405–410 (2012)CrossRefGoogle Scholar
  27. 27.
    Bui, L., et al.: Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angew. Chem. Int. Ed. 52(31), 8022–8025 (2013). CrossRefGoogle Scholar
  28. 28.
    Nakajima, K., Gupta, N.K., Fukuoka, A.: Lewis acid catalysis of Nb2O5 for selective furfural formation from xylose on water. 8th International Symposium of on Acid-base Catalysis (2017)Google Scholar
  29. 29.
    Molina, M.J.C., et al.: Exploitment of niobium oxide effective acidity for xylose dehydration to furfural. Catal. Today 254, 90–98 (2015). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rafael S. de Carvalho
    • 1
  • Fábio de A. Rodrigues
    • 1
  • Robson S. Monteiro
    • 2
  • Wagner L. da Silva Faria
    • 1
  1. 1.Department of ChemistryFederal University of ViçosaViçosaBrazil
  2. 2.Catalysis Consultoria Ltda.Rio de JaneiroBrazil

Personalised recommendations