Skip to main content
Log in

Catalytic Conversion of Glucose to 5-(Hydroxymethyl)furfural Over Phosphotungstic Acid Supported on SiO2-Coated Fe3O4

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

There is a significant interest in valorization of biomass and its derivatives into chemicals. In this work, glucose derived from biomass was converted into 5-(hydroxymethyl)furfural (HMF). Phosphotungstic acid (PHA) supported on magnetic nanoparticles Fe3O4 coated by SiO2 (Fe3O4@SiO2/PHA) was prepared and employed in the synthesis of HMF from glucose. The supported catalyst of Fe3O4@SiO2/PHA was characterized by infrared spectroscopy (IR) and powder X-ray diffraction. The results indicated that the supported catalyst exhibited similar catalytic activity to that of homogeneous PHA. The effects of such reaction variables as the amount of PHA, reaction solvent, temperature and time were studied in detail. The yield of HMF at 30.4% was observed at 130 °C for 3 h in N,N-dimethylformamide under nitrogen atmosphere. The supported catalyst was recovered by an external magnet after the reaction and reused in the next run without further pretreatment. No significant change in activity was observed at the initial four cycles, in which the yield of HMF changed in a small range from 28.7 to 30.8%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chum, H.L., Overend, R.P.: Biomass and renewable fuels. Fuel Process. Technol. 71, 187–195 (2001)

    Article  Google Scholar 

  2. Serranoruiz, J.C., Luque, R., Sepúlvedaescribano, A.: Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40, 5266–5281 (2011)

    Article  Google Scholar 

  3. Jiménez-Morales, I., Moreno-Recio, M., Santamaría-González, J., Maireles-Torres, P., Jiménez-López, A.: Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural. Appl. Catal. B 154, 190–196 (2014)

    Article  Google Scholar 

  4. Dutta, S., Wu, K.C.W.: Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem. 16, 4615–4626 (2014)

    Article  Google Scholar 

  5. Dutta, S., Wu, K.C.W., Saha, B.: Emerging strategies for breaking the 3D amorphous network of lignin. Catal. Sci. Technol. 4, 3785–3799 (2014)

    Article  Google Scholar 

  6. Gorbanev, Y.Y., Klitgaard, S.K., Woodley, J.M., Christensen, C.H., Riisager, A.: Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2, 672–675 (2009)

    Article  Google Scholar 

  7. James, O.O., Maity, S., Usman, L.A., Ajanaku, K.O., Ajani, O.O., Siyanbola, T.O., Sahu, S., Chaubey, R.: Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ. Sci. 3, 1833–1850 (2010)

    Article  Google Scholar 

  8. Penín, L., Peleteiro, S., Yañez, R.,. Parajó, J.C., Santos, V.: Kinetics of 5-hydroxymethylfurfural production from monosaccharides in media containing an ionic liquid and a solid acid catalyst. BioResources 12, 8402–8418 (2017)

    Google Scholar 

  9. Tong, X., Ma, Y.,. Li, Y.: Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A 385, 1–13 (2010)

    Article  Google Scholar 

  10. Lee, Y.C., Chen, C.T., Chiu, Y.T., Wu, K.C.W.: An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5, 2153–2157 (2013)

    Article  Google Scholar 

  11. Lee, Y.C., Dutta, S., Wu, K.C.W.: Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7, 3241–3246 (2014)

    Article  Google Scholar 

  12. Hsu, W.H., Lee, Y.Y., Peng, W.H., Wu, K.C.W.: Cellulosic conversion in ionic liquids (ILs): effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal. Today 174, 65–69 (2011)

    Article  Google Scholar 

  13. Antal, M.J., Mok, W.S.L., Richards, G.N.: Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 199, 91–109 (1990)

    Article  Google Scholar 

  14. Thananatthanachon, T., Rauchfuss, T.B.: Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew. Chem. 49, 6616–6618 (2010)

    Article  Google Scholar 

  15. Ohara, M., ATakagaki, A., Nishimura, S., Ebitani, K.: Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Appl. Catal. A 383, 149–155 (2010)

    Article  Google Scholar 

  16. Ordomsky, V.V., Sushkevich, V.L., Schouten, J.C., Schaaf, J.V.D., Nijhuis, T.A.: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J. Catal. 300, 37–46 (2013)

    Article  Google Scholar 

  17. Jiménez-Morales, I., Teckchandani-Ortiz, A., Santamaría-González, J., Maireles-Torres, P., Jimenez-Lopez, A.: Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Appl. Catal. B 144, 22–28 (2014)

    Article  Google Scholar 

  18. Yang, Y., Xiang, X, Tong, D., Hu, C., Abu-Omar, M.M.: One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO4 2–/ZrO2–Al2O3. Bioresour. Technol. 116, 302–306 (2012)

    Article  Google Scholar 

  19. Combs, E., Cinlar, B., Pagan-Torres, Y., Dumesic, J.A., Shanks, H.B.: Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural in an aqueous system. Catal. Commun. 30, 1–4 (2013)

    Article  Google Scholar 

  20. Yang, Y., Hu, C., Abu-Omar, M.M.: The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3–H2O/THF biphasic medium. J. Mol. Catal. A 376, 98–102 (2013)

    Article  Google Scholar 

  21. Teimouri, A., Mazaheri, M., Chermahini, A.N., Salavati, H., Momenbeikc, F., Fazel-Najafabadi, M., Taiwan, J.: Catalytic conversion of glucose to 5-hydroxymethylfurfural (HMF) using nano-POM/nano-ZrO2/nano-γ-Al2O3. Inst. Chem. E 49, 40–50 (2015)

    Google Scholar 

  22. Ren, Q., Huang, Y.Z., Ma, H., Wang, F., Gao, J.: Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylf. Bioresources 8, 1563–1572 (2013)

    Google Scholar 

  23. Rasrendra, C.B., Soetedjo, J.N.M., Makertihartha, I.G.B.N., Adisasmito, S., Heeres, H.J.: The catalytic conversion of d-glucose to 5-hydroxymethylfurfural in DMSO using metal salts. Top. Catal. 55, 543–549 (2012)

    Article  Google Scholar 

  24. Alam, M.I., De, S., Singh, B., Saha, B., Abu-Omar, M.M.: Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl. Catal. A 486, 42–48 (2014)

    Article  Google Scholar 

  25. Swift, T.D., Nguyen, H., Anderko, A., Nikolakis, V., Vlachos, D.G.: Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(III) chloride and hydrochloric acid solution. Green Chem. 17, 4725–4735 (2015)

    Article  Google Scholar 

  26. Qi, X., Watanabe, M., Aida, T.M., Smith, R.L.: Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun. 9, 2244–2249 (2008)

    Article  Google Scholar 

  27. Pagán-Torres, Y.J., Wang, J.M.R., Gallo, T., Shanks, B.H., Dumesic, J.A.: Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Brønsted acid catalysts in water in a biphasic reactor with an alkyl. ACS Catal. 2, 930–934 (2012)

    Article  Google Scholar 

  28. Osatiashtiani, A., Lee, A.F., Brown, D.R., Melero, J.A., Morales, G., Wilson, K.: Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catal. Sci. Technol. 4, 333–342 (2014)

    Article  Google Scholar 

  29. Ordomsky, V.V., Van, D.S.J., Schouten, J.C., Nijhuis, T.A.: Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams. ChemSusChem 6, 1697–1707 (2013)

    Article  Google Scholar 

  30. He, R., Huang, X., Zhao, P., Han, B., Wu, T., Wu, Y.: The synthesis of 5-hydroxymethylfurfural from glucose in biphasic system by phosphotungstic acidified titanium–zirconium dioxide. Waste Biomass Valor. (2017). https://doi.org/10.1007/s12649-017-0024-9

  31. Liu, W., Holladay, J.: Catalytic conversion of glucose into 5-hydroxymethylfurfural by Hf(OTf)4 Lewis acid in water. Catal. Today 200, 106–116 (2013)

    Article  Google Scholar 

  32. Hu, L., Wu, Z., Xu, J., Sun, Y., Lin, L., Liu, S.: Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem. Eng. J. 244, 137–144 (2014)

    Article  Google Scholar 

  33. Guo, F., Fang, Z., Zhou, T.J.: Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide. Bioresource Technol. 112, 313–318 (2012)

    Article  Google Scholar 

  34. Hansen, T.S., Woodley, J.M., Riisager, A.: Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydr. Res. 344, 2568–2572 (2009)

    Article  Google Scholar 

  35. Takagaki, A., Ohara, M., Nishimura, S., Ebitani, K.: A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem. Commun. 41, 6276–6278 (2009)

    Article  Google Scholar 

  36. Veisi, H., Gholami, J., Ueda, H., Mohammadi, P., Noroozi, M.: Magnetically palladium catalyst stabilized by diaminoglyoxime-functionalized magnetic Fe3O4 nanoparticles as active and reusable catalyst for Suzuki coupling reactions. J. Mol. Catal. A 396, 216–223 (2015)

    Article  Google Scholar 

  37. Wang, S., Zhang, Z., Liu, B.: Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst. ACS Sustain. Chem. Eng. 3, 406–412 (2015)

    Article  Google Scholar 

  38. Fan, G., Luo, S., Fang, T., Li, J., Song, G.: ZnBr2 supported on silica-coated magnetic nanoparticles of Fe3O4 for conversion of CO to diphenyl carbonate. RSC Adv. 5, 56478–56485 (2015)

    Article  Google Scholar 

  39. Khder, A.S., Ahmed, A.I.: Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl. Catal. A 354, 153–160 (2009)

    Article  Google Scholar 

  40. Rafiee, E., Joshaghani, M., Eavani, S., Rashidzadeh, S.: A revision for the synthesis of β-enaminones in solvent free conditions: efficacy of different supported heteropoly acids as active and reusable catalysts. Green Chem. 10, 982–989 (2008)

    Article  Google Scholar 

  41. Kozhevnikov, I.V.: Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. Chem. Rev. 98, 171–198 (1998)

    Article  Google Scholar 

  42. Zhang, H., Xian, A.J., Shen, Y.H., Qiu, L., Tian, X.: Layer-by-layer inkjet printing of fabricating reduced graphene-polyoxometalate composite film for chemical sensors. Phys. Chem. Chem. Phys. 14, 12757–12763 (2012)

    Article  Google Scholar 

  43. Fan, G.Z., Cheng, S.Q., Zhu, M.F., Gao, X.L.: Palladium chloride anchored on organic functionalized MCM-41 as a catalyst for the Heck reaction. Appl. Organomet. Chem. 21, 670–675 (2007)

    Article  Google Scholar 

  44. Cardoso, L.A.M., Jr., Angélica, R.E., Gonzaga, W.A., Aguiar, L.M.G., Andrade, H.M.C.: Friedel–Crafts acylation of anisole with acetic anhydride over silica-supported heteropolyphosphotungstic acid (HPW/SiO2). J. Mol. Catal. A 209, 189–197 (2004)

    Article  Google Scholar 

  45. Atia, H., Armbruster, U., Martin, A.: Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J. Catal. 258, 71–82 (2008)

    Article  Google Scholar 

  46. Lee, J., Lee, Y., Youn, J.K., Na, H.B., Yu, T., Kim, H., Hyeon, T.: Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4, 143–152 (2008)

    Article  Google Scholar 

  47. Jha, A., Garade, A.C., Mirajkar, S.P., Rode, C.V.: MCM-41 supported phosphotungstic acid for the hydroxyalkylation of phenol to phenolphthalein. Ind. Eng. Chem. Res. 51, 391–3922 (2012)

    Article  Google Scholar 

  48. Shi, N., Liu, Q., Zhang, Q., Wang, T., Ma, L.: High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chem. 15, 1967–1974 (2013)

    Article  Google Scholar 

  49. Rinaldi, R., Palkovits, R., Schüth, F.: Depolymerization of cellulose using solid catalysts in ionic liquids. Angew. Chem. Int. Ed. 47, 8047–8050 (2008)

    Article  Google Scholar 

  50. Bicker, M., Kaiser, D., Ott, L., Vogel, H., Supercrit, J.: Dehydration of d-fructose to hydroxymethylfurfural in sub-and supercritical fluids. J. Supercrit. Fluids 36, 118–126 (2005)

    Article  Google Scholar 

  51. He, J., Liu, M., Huang, K., Walker, T.W., Maravelias, C.T., Dumesic, J.A., Huber, G.W.: Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem. 19, 3642–3653 (2017)

    Article  Google Scholar 

  52. Wang, J., Xu, W., Ren, J., Liu, X., Lu, G., Wang, Y.: Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem. 13, 2678–2681 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Technology Talents Innovative Team Project from Hubei Provincial Department of Education (T201407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhi Fan or Jianfen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, Z., Fan, G. et al. Catalytic Conversion of Glucose to 5-(Hydroxymethyl)furfural Over Phosphotungstic Acid Supported on SiO2-Coated Fe3O4. Waste Biomass Valor 10, 2263–2271 (2019). https://doi.org/10.1007/s12649-018-0242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0242-9

Keywords

Navigation