Catalytic Conversion of Glucose to 5-(Hydroxymethyl)furfural Over Phosphotungstic Acid Supported on SiO2-Coated Fe3O4

Original Paper
  • 3 Downloads

Abstract

There is a significant interest in valorization of biomass and its derivatives into chemicals. In this work, glucose derived from biomass was converted into 5-(hydroxymethyl)furfural (HMF). Phosphotungstic acid (PHA) supported on magnetic nanoparticles Fe3O4 coated by SiO2 (Fe3O4@SiO2/PHA) was prepared and employed in the synthesis of HMF from glucose. The supported catalyst of Fe3O4@SiO2/PHA was characterized by infrared spectroscopy (IR) and powder X-ray diffraction. The results indicated that the supported catalyst exhibited similar catalytic activity to that of homogeneous PHA. The effects of such reaction variables as the amount of PHA, reaction solvent, temperature and time were studied in detail. The yield of HMF at 30.4% was observed at 130 °C for 3 h in N,N-dimethylformamide under nitrogen atmosphere. The supported catalyst was recovered by an external magnet after the reaction and reused in the next run without further pretreatment. No significant change in activity was observed at the initial four cycles, in which the yield of HMF changed in a small range from 28.7 to 30.8%.

Graphical Abstract

Keywords

Glucose 5-(Hydroxymethyl)furfural Phosphotungstic acid Fe3O4 SiO2 

Notes

Acknowledgements

This work was supported by Technology Talents Innovative Team Project from Hubei Provincial Department of Education (T201407).

References

  1. 1.
    Chum, H.L., Overend, R.P.: Biomass and renewable fuels. Fuel Process. Technol. 71, 187–195 (2001)CrossRefGoogle Scholar
  2. 2.
    Serranoruiz, J.C., Luque, R., Sepúlvedaescribano, A.: Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40, 5266–5281 (2011)CrossRefGoogle Scholar
  3. 3.
    Jiménez-Morales, I., Moreno-Recio, M., Santamaría-González, J., Maireles-Torres, P., Jiménez-López, A.: Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural. Appl. Catal. B 154, 190–196 (2014)CrossRefGoogle Scholar
  4. 4.
    Dutta, S., Wu, K.C.W.: Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem. 16, 4615–4626 (2014)CrossRefGoogle Scholar
  5. 5.
    Dutta, S., Wu, K.C.W., Saha, B.: Emerging strategies for breaking the 3D amorphous network of lignin. Catal. Sci. Technol. 4, 3785–3799 (2014)CrossRefGoogle Scholar
  6. 6.
    Gorbanev, Y.Y., Klitgaard, S.K., Woodley, J.M., Christensen, C.H., Riisager, A.: Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2, 672–675 (2009)CrossRefGoogle Scholar
  7. 7.
    James, O.O., Maity, S., Usman, L.A., Ajanaku, K.O., Ajani, O.O., Siyanbola, T.O., Sahu, S., Chaubey, R.: Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ. Sci. 3, 1833–1850 (2010)CrossRefGoogle Scholar
  8. 8.
    Penín, L., Peleteiro, S., Yañez, R.,. Parajó, J.C., Santos, V.: Kinetics of 5-hydroxymethylfurfural production from monosaccharides in media containing an ionic liquid and a solid acid catalyst. BioResources 12, 8402–8418 (2017)Google Scholar
  9. 9.
    Tong, X., Ma, Y.,. Li, Y.: Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A 385, 1–13 (2010)CrossRefGoogle Scholar
  10. 10.
    Lee, Y.C., Chen, C.T., Chiu, Y.T., Wu, K.C.W.: An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5, 2153–2157 (2013)CrossRefGoogle Scholar
  11. 11.
    Lee, Y.C., Dutta, S., Wu, K.C.W.: Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7, 3241–3246 (2014)CrossRefGoogle Scholar
  12. 12.
    Hsu, W.H., Lee, Y.Y., Peng, W.H., Wu, K.C.W.: Cellulosic conversion in ionic liquids (ILs): effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal. Today 174, 65–69 (2011)CrossRefGoogle Scholar
  13. 13.
    Antal, M.J., Mok, W.S.L., Richards, G.N.: Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 199, 91–109 (1990)CrossRefGoogle Scholar
  14. 14.
    Thananatthanachon, T., Rauchfuss, T.B.: Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew. Chem. 49, 6616–6618 (2010)CrossRefGoogle Scholar
  15. 15.
    Ohara, M., ATakagaki, A., Nishimura, S., Ebitani, K.: Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Appl. Catal. A 383, 149–155 (2010)CrossRefGoogle Scholar
  16. 16.
    Ordomsky, V.V., Sushkevich, V.L., Schouten, J.C., Schaaf, J.V.D., Nijhuis, T.A.: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J. Catal. 300, 37–46 (2013)CrossRefGoogle Scholar
  17. 17.
    Jiménez-Morales, I., Teckchandani-Ortiz, A., Santamaría-González, J., Maireles-Torres, P., Jimenez-Lopez, A.: Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Appl. Catal. B 144, 22–28 (2014)CrossRefGoogle Scholar
  18. 18.
    Yang, Y., Xiang, X, Tong, D., Hu, C., Abu-Omar, M.M.: One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO4 2–/ZrO2–Al2O3. Bioresour. Technol. 116, 302–306 (2012)CrossRefGoogle Scholar
  19. 19.
    Combs, E., Cinlar, B., Pagan-Torres, Y., Dumesic, J.A., Shanks, H.B.: Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural in an aqueous system. Catal. Commun. 30, 1–4 (2013)CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Hu, C., Abu-Omar, M.M.: The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3–H2O/THF biphasic medium. J. Mol. Catal. A 376, 98–102 (2013)CrossRefGoogle Scholar
  21. 21.
    Teimouri, A., Mazaheri, M., Chermahini, A.N., Salavati, H., Momenbeikc, F., Fazel-Najafabadi, M., Taiwan, J.: Catalytic conversion of glucose to 5-hydroxymethylfurfural (HMF) using nano-POM/nano-ZrO2/nano-γ-Al2O3. Inst. Chem. E 49, 40–50 (2015)Google Scholar
  22. 22.
    Ren, Q., Huang, Y.Z., Ma, H., Wang, F., Gao, J.: Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylf. Bioresources 8, 1563–1572 (2013)Google Scholar
  23. 23.
    Rasrendra, C.B., Soetedjo, J.N.M., Makertihartha, I.G.B.N., Adisasmito, S., Heeres, H.J.: The catalytic conversion of d-glucose to 5-hydroxymethylfurfural in DMSO using metal salts. Top. Catal. 55, 543–549 (2012)CrossRefGoogle Scholar
  24. 24.
    Alam, M.I., De, S., Singh, B., Saha, B., Abu-Omar, M.M.: Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl. Catal. A 486, 42–48 (2014)CrossRefGoogle Scholar
  25. 25.
    Swift, T.D., Nguyen, H., Anderko, A., Nikolakis, V., Vlachos, D.G.: Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(III) chloride and hydrochloric acid solution. Green Chem. 17, 4725–4735 (2015)CrossRefGoogle Scholar
  26. 26.
    Qi, X., Watanabe, M., Aida, T.M., Smith, R.L.: Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun. 9, 2244–2249 (2008)CrossRefGoogle Scholar
  27. 27.
    Pagán-Torres, Y.J., Wang, J.M.R., Gallo, T., Shanks, B.H., Dumesic, J.A.: Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Brønsted acid catalysts in water in a biphasic reactor with an alkyl. ACS Catal. 2, 930–934 (2012)CrossRefGoogle Scholar
  28. 28.
    Osatiashtiani, A., Lee, A.F., Brown, D.R., Melero, J.A., Morales, G., Wilson, K.: Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catal. Sci. Technol. 4, 333–342 (2014)CrossRefGoogle Scholar
  29. 29.
    Ordomsky, V.V., Van, D.S.J., Schouten, J.C., Nijhuis, T.A.: Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams. ChemSusChem 6, 1697–1707 (2013)CrossRefGoogle Scholar
  30. 30.
    He, R., Huang, X., Zhao, P., Han, B., Wu, T., Wu, Y.: The synthesis of 5-hydroxymethylfurfural from glucose in biphasic system by phosphotungstic acidified titanium–zirconium dioxide. Waste Biomass Valor. (2017).  https://doi.org/10.1007/s12649-017-0024-9
  31. 31.
    Liu, W., Holladay, J.: Catalytic conversion of glucose into 5-hydroxymethylfurfural by Hf(OTf)4 Lewis acid in water. Catal. Today 200, 106–116 (2013)CrossRefGoogle Scholar
  32. 32.
    Hu, L., Wu, Z., Xu, J., Sun, Y., Lin, L., Liu, S.: Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem. Eng. J. 244, 137–144 (2014)CrossRefGoogle Scholar
  33. 33.
    Guo, F., Fang, Z., Zhou, T.J.: Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide. Bioresource Technol. 112, 313–318 (2012)CrossRefGoogle Scholar
  34. 34.
    Hansen, T.S., Woodley, J.M., Riisager, A.: Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydr. Res. 344, 2568–2572 (2009)CrossRefGoogle Scholar
  35. 35.
    Takagaki, A., Ohara, M., Nishimura, S., Ebitani, K.: A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem. Commun. 41, 6276–6278 (2009)CrossRefGoogle Scholar
  36. 36.
    Veisi, H., Gholami, J., Ueda, H., Mohammadi, P., Noroozi, M.: Magnetically palladium catalyst stabilized by diaminoglyoxime-functionalized magnetic Fe3O4 nanoparticles as active and reusable catalyst for Suzuki coupling reactions. J. Mol. Catal. A 396, 216–223 (2015)CrossRefGoogle Scholar
  37. 37.
    Wang, S., Zhang, Z., Liu, B.: Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst. ACS Sustain. Chem. Eng. 3, 406–412 (2015)CrossRefGoogle Scholar
  38. 38.
    Fan, G., Luo, S., Fang, T., Li, J., Song, G.: ZnBr2 supported on silica-coated magnetic nanoparticles of Fe3O4 for conversion of CO to diphenyl carbonate. RSC Adv. 5, 56478–56485 (2015)CrossRefGoogle Scholar
  39. 39.
    Khder, A.S., Ahmed, A.I.: Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl. Catal. A 354, 153–160 (2009)CrossRefGoogle Scholar
  40. 40.
    Rafiee, E., Joshaghani, M., Eavani, S., Rashidzadeh, S.: A revision for the synthesis of β-enaminones in solvent free conditions: efficacy of different supported heteropoly acids as active and reusable catalysts. Green Chem. 10, 982–989 (2008)CrossRefGoogle Scholar
  41. 41.
    Kozhevnikov, I.V.: Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. Chem. Rev. 98, 171–198 (1998)CrossRefGoogle Scholar
  42. 42.
    Zhang, H., Xian, A.J., Shen, Y.H., Qiu, L., Tian, X.: Layer-by-layer inkjet printing of fabricating reduced graphene-polyoxometalate composite film for chemical sensors. Phys. Chem. Chem. Phys. 14, 12757–12763 (2012)CrossRefGoogle Scholar
  43. 43.
    Fan, G.Z., Cheng, S.Q., Zhu, M.F., Gao, X.L.: Palladium chloride anchored on organic functionalized MCM-41 as a catalyst for the Heck reaction. Appl. Organomet. Chem. 21, 670–675 (2007)CrossRefGoogle Scholar
  44. 44.
    Cardoso, L.A.M., Jr., Angélica, R.E., Gonzaga, W.A., Aguiar, L.M.G., Andrade, H.M.C.: Friedel–Crafts acylation of anisole with acetic anhydride over silica-supported heteropolyphosphotungstic acid (HPW/SiO2). J. Mol. Catal. A 209, 189–197 (2004)CrossRefGoogle Scholar
  45. 45.
    Atia, H., Armbruster, U., Martin, A.: Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J. Catal. 258, 71–82 (2008)CrossRefGoogle Scholar
  46. 46.
    Lee, J., Lee, Y., Youn, J.K., Na, H.B., Yu, T., Kim, H., Hyeon, T.: Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4, 143–152 (2008)CrossRefGoogle Scholar
  47. 47.
    Jha, A., Garade, A.C., Mirajkar, S.P., Rode, C.V.: MCM-41 supported phosphotungstic acid for the hydroxyalkylation of phenol to phenolphthalein. Ind. Eng. Chem. Res. 51, 391–3922 (2012)CrossRefGoogle Scholar
  48. 48.
    Shi, N., Liu, Q., Zhang, Q., Wang, T., Ma, L.: High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chem. 15, 1967–1974 (2013)CrossRefGoogle Scholar
  49. 49.
    Rinaldi, R., Palkovits, R., Schüth, F.: Depolymerization of cellulose using solid catalysts in ionic liquids. Angew. Chem. Int. Ed. 47, 8047–8050 (2008)CrossRefGoogle Scholar
  50. 50.
    Bicker, M., Kaiser, D., Ott, L., Vogel, H., Supercrit, J.: Dehydration of d-fructose to hydroxymethylfurfural in sub-and supercritical fluids. J. Supercrit. Fluids 36, 118–126 (2005)CrossRefGoogle Scholar
  51. 51.
    He, J., Liu, M., Huang, K., Walker, T.W., Maravelias, C.T., Dumesic, J.A., Huber, G.W.: Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem. 19, 3642–3653 (2017)CrossRefGoogle Scholar
  52. 52.
    Wang, J., Xu, W., Ren, J., Liu, X., Lu, G., Wang, Y.: Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem. 13, 2678–2681 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringWuhan Polytechnic UniversityWuhanChina

Personalised recommendations