Skip to main content
Log in

Production and Characterization of Bacterial Cellulose from Citrus Peels

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cellulose is the most common polymer in the world, formed by β-1,4 linked glucopyranose units. In this study, citrus peels (lemon, mandarin, orange and grapefruit) were used for the production of bacterial cellulose (BC). The peels were hydrolyzed with dilute acid and hydrolysates were used for BC production. The production of BC was carried out at 28–32 °C for 21 days under static conditions with Komagataeibacter hansenii GA2016. BC yields were found to be between 2.06 and 3.92%. It was found that the FTIR spectra of the BCs produced in citrus peel hydrolysates were similar to BC produced in the commercially available nutrients. The result of this study showed that all the BCs produced from citrus peels were characterized to have high water holding capacity, thin fiber diameter, high the thermal stability and high crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lynd, L.R., Weimer, P.J., Van Zyl, W.H.: Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3), 506–577 (2002)

    Article  Google Scholar 

  2. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 44(22), 3358–3393 (2005)

    Article  Google Scholar 

  3. Brown, R.M.: Cellulose structure and biosynthesis: what is in store for the 21th century. J. Polym. Sci. A 42, 487–495 (1991)

    Article  Google Scholar 

  4. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., Sun, D.: Recent advances in bacterial cellulose. Cellulose 21(1), 1–30 (1991)

    Article  Google Scholar 

  5. Perez, S., Samain, D.: Structure and engineering of celluloses. Adv. Carbohydr. Chem. Biochem. 64, 25–116 (2010)

    Article  Google Scholar 

  6. Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska, H.: Bacterial cellulose. In: Steinbuchel, A. (ed.), Biopolymers: Polysaccharides I., vol. 7, pp. 37–90. Wiley, Munster (2000)

    Google Scholar 

  7. Ross, P., Mayer, R., Benziman, M.: Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55(1), 35–58 (1991)

    Google Scholar 

  8. Iguchi, M., Yamanaka, S., Budhiono, A.: Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (1991)

    Article  Google Scholar 

  9. Ng, C., Sheu, F., Wang, C., Shyu, Y.: Fermentation of Monascus purpureus on agri-by-products to make colorful and functional bacterial cellulose (NATA). Microbiol. Indones. 4(1), 6–10 (2004)

    Google Scholar 

  10. Shi, Z., Zhang, Y., Phillips, G.O., Yang, G.: Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014)

    Article  Google Scholar 

  11. Zhu, H., Jia, S., Yang, H., Tang, W., Jia, Y., Tan, Z.: Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with polylysine. Food Sci. Biotechnol. 19, 1479–1484 (2014)

    Article  Google Scholar 

  12. Shah, J., Brown, R.M. Jr.: Towards electronic displays made from microbial cellulose. Appl. Microbiol. Biotechnol. 66(4), 352–355 (2005)

    Article  Google Scholar 

  13. Çakar, F., Özer, İ, Aytekin, A.O., Şahin, F.: Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr. Polym. 106, 7–13 (2014)

    Article  Google Scholar 

  14. Chen, P., Cho, S.Y., Jin, H.J.: Modification and applications of bacterial celluloses in polymer science. Macromol. Res. 18, 309–320 (2010)

    Article  Google Scholar 

  15. Saibuatong, O.A., Phisalaphong, M.: Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr. Polym. 79(2), 455–460 (2010)

    Article  Google Scholar 

  16. Dahman, Y.: Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J. Nanosci. Nanotechnol. 9, 5105–5122 (2009)

    Article  Google Scholar 

  17. Yamanaka, S., Sugiyama, J.: Structural modification of bacterial cellulose. Cellulose 7(3), 213–225 (2000)

    Article  Google Scholar 

  18. Keshk, S.M.A.S.: Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr. Polym. 99, 98–100 (2014)

    Article  Google Scholar 

  19. Castro, C., Zuluaga, R., Putaux, J.L., Caroa, G., Mondragon, I., Ganán, P.: Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr. Polym. 84(1), 96–102 (2011)

    Article  Google Scholar 

  20. Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F.: Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3), 187–200 (1998)

    Article  Google Scholar 

  21. Lin, K.W., Lin, H.Y.: Quality characteristics of Chinesestyle meatball containing bacterial cellulose (Nata). J. Food Sci. 69, 107–111 (2004)

    Article  Google Scholar 

  22. Stephens, S.R., Westland, J.A., Neogi, A.N.: Method of using bacterial cellulose as a dietary fiber component. US patent 4960763 (1990)

  23. Guo, X., Cavka, A., Jönsson, L.J., Hong, F.: Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb. Cell Fact. 12, 93 (2013)

    Article  Google Scholar 

  24. Charreau, H., Foresti, M.L., Vazquez, A.: Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol. 7, 56–80 (2013)

    Article  Google Scholar 

  25. Lin, D., Sanchez, P.L., Li, R., Li, Z.: Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113–119 (2014)

    Article  Google Scholar 

  26. Carreira, P., Mendes, J.A., Trovatti, E., Serafim, L.S., Freire, C.S., Silvestre, A.J., Neto, C.P.: Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour. Technol. 102, 7354–7360 (2011)

    Article  Google Scholar 

  27. Uraki, Y., Morito, M., Kishimoto, T., Sano, Y.: Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56, 341–347 (2002)

    Article  Google Scholar 

  28. Bae, S., Shoda, M.: Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 67, 45–51 (2005)

    Article  Google Scholar 

  29. Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu, V.: Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J. Microb. Biochem. Technol. 5, 31–33 (2013)

    Google Scholar 

  30. Hong, F., Qiu, K.: An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr. Polym. 72, 545–549 (2008)

    Article  Google Scholar 

  31. Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C.: Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. C. 29, 546–551 (2009)

    Article  Google Scholar 

  32. Hong, F., Guo, X., Zhang, S., Han, S.F., Yang, G., Jönsson, L.J.: Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour. Technol. 104, 503–508 (2012)

    Article  Google Scholar 

  33. Zeng, X., Liu, J., Chen, J., Wang, Q., Li, Z., Wang, H.: Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 38, 1993–1999 (2011)

    Article  Google Scholar 

  34. Usha, R.M., Appaiah, K.A.: Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. J. Microbiol. Biotechnol. 21, 739–745 (2011)

    Article  Google Scholar 

  35. Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Freire, C.S.R.: Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55, 205–211 (2013)

    Article  Google Scholar 

  36. Mohammadkazemi, F., Azin, M., Ashori, A.: Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117, 518–523 (2015)

    Article  Google Scholar 

  37. Kızıltaş, E.E., Kızıltaş, A., Gardner, D.J.: Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124, 131–138 (2015)

    Article  Google Scholar 

  38. Pinzon, K.M., Rodriguez, M.C., Sandova, E.R.: Effect of drying conditions on the physical properties of impregnated orange peel. Braz. J. Chem. Eng. 30(3), 667–676 (2013)

    Article  Google Scholar 

  39. Agriculture Production Data. http://faostat.fao.org (2016). Accessed 16 Aug 2016

  40. TUIK: Crop Production Statistics. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18706 (2015). Accessed 16 Aug 2016

  41. Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18706 (2015). Accessed 16 Aug 2016

  42. Marin, F.R., Soler-Rivas, C., Benavente-Garcia, O., Castillo, J., Perez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100(2), 736–741 (2007)

    Article  Google Scholar 

  43. Crupi, M.L., Costa, R., Dugo, P., Dugo, G., Mondello, L.: A comprehensive study on the chemical composition and aromatic characteristics of lemon liquor. Food Chem. 105(2), 771–783 (2007)

    Article  Google Scholar 

  44. Peel: (fruit). http://en.wikipedia.org/wiki/Peel (2014). Accessed 16 Aug 2016

  45. Başer, H.C.: Tıbbi ve aromatik bitkilerin ilaç ve alkollü içki sanayilerinde kullanımı, Istanbul Technical University Publications, Publication no: 1997-39, İstanbul (1997)

  46. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  47. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  48. Canettieri, E.V., Moraes Rocho, G.J., Carvalho, K.A. Jr., Almeida de Silva, J.B.: Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour. Technol. 98(2), 422–428 (2007)

    Article  Google Scholar 

  49. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  50. Güzel, M., Akpinar, O.: Komagataeibacter hansenii GA2016 ile bakteriyel selüloz üretimi ve karakterizasyonu. J. Food 42(5), 620–633 (2017)

    Google Scholar 

  51. Son, C., Chung, S., Lee, J., Kim, S.: Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microbiol. Biotechnol. 12(5), 722–728 (2002)

    Google Scholar 

  52. AOAC: Official Methods of Analysis, 15th edn. Association of Analytical Chemists, Arlington, Virginia, (1989)

  53. Tappi: Tappi Useful Method UM256. Water Retention Value (WRV), Tappi Useful Methods. Tappi Press, Atlanta (1991)

    Google Scholar 

  54. Hermans, P.H., Weidinger, A.: Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J. Appl. Phys. 19(5), 491 (1948)

    Article  Google Scholar 

  55. Fang, L., Catchmark, J.M.: Characterization of water-soluble exopolysaccharide from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21, 3965–3978 (2014)

    Article  Google Scholar 

  56. Mikkelsen, D., Flanagan, B., Dykes, G., Gidley, M.: Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107, 576–583 (2009)

    Article  Google Scholar 

  57. Santos, S.M., CArbajo, J.M., Villar, J.C.: The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gloconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. Bioresources 8(3), 3630–3645 (2013)

    Google Scholar 

  58. Miyamoto, H., Tsuduki, M., Ago, M., Yamane, C., Yamane, C., Ueda, M., Okajima, K.: Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Text. Res. J. 84(11), 1147–1158 (2014)

    Article  Google Scholar 

  59. Lin, S.P., Huang, Y.H., Hsu, K.D., Lai, Y.J., Chen, Y.K., Cheng, K.C.: Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr. Polym. 151, 827–833 (2016)

    Article  Google Scholar 

  60. Rodriguez, R., Jiménez, R., Fernández-Bolaños, J., Guillén, R., Heredia, A.: Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 17(1), 3–15 (2006)

    Article  Google Scholar 

  61. Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R.: Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int. Food Res. J. 19(1), 153–158 (2012)

    Google Scholar 

  62. Mantanis, G.I., Young, R.A., Rowell, R.M.: Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2, 1–22 (1995)

    Google Scholar 

  63. Robertson, A.A.: Cellulose-liquid interactions. Pulp Pap. Mag. Can. 65, 171–178 (1964)

    Google Scholar 

  64. Fabio, P.G., Nuno, H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Carmen, S.R.F.: Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55, 205–211 (2013)

    Article  Google Scholar 

  65. Nesic, A.R., Trifunovic, S.S., Grujic, A.S., Velickovic, S.J., Antonovic, D.G.: Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr. Res. 346(15), 2463–2468 (2011)

    Article  Google Scholar 

  66. Sivam, A.S., Sun-Waterhouse, D., Perera, C.O., Waterhouse, G.I.N.: Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 131(3), 802–810 (2012)

    Article  Google Scholar 

  67. Park, J.K., Park, Y.H., Jung, J.Y.: Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol. Bioprocess. Eng. 8(2), 83–88 (2003)

    Article  Google Scholar 

  68. Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y.: Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via ımmobilising ε-polylysine nanocoatings. Food Hydrocoll. 36, 204–211 (2014)

    Article  Google Scholar 

  69. Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized celluloseartificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)

    Article  Google Scholar 

  70. Wan, Y.Z., Hong, L., Jia, S.R., Huang, Y., Zhu, Y., Wang, Y.L., Jiang, H.J.: Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos. Sci. Technol. 66, 1825–1832 (2006)

    Article  Google Scholar 

  71. El-Saied, H., El-Diwany, A., Basta, A.H., Atwa, N.A., El-Ghawas, E.: Economical bacterial cellulose. BioResources 3(4), 1196–1217 (2008)

    Google Scholar 

  72. De Souza, C.F., Lucyszyn, N., Woehl, M.A., Riegel-Vidotti, I.C., Borsali, R., Sierakowski, M.R.: Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr. Polym. 93, 144–153 (2013)

    Article  Google Scholar 

  73. Vazquez, A., Foresti, M.L., Cerrutti, P., Galvagno, M.: Bacterial Cellulose fromsimple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21(2), 545–554 (2013)

    Article  Google Scholar 

  74. Ang, A., Ashaari, Z., Bakar, E.S., Ibrahim, N.A.: Characterization and optimization of the glyoxalation of a methanol-fractioned alkali lignin using response surface methodology. Bioresources 10(3), 4795–4810 (2015)

    Google Scholar 

  75. Halib, N., Iqbal, M.C., Ahmad, A.M.: I.: Physicochemical properties and characterization of Nata de Coco from local food ındustries as a source of cellulose. Sains Malays. 41(2), 205–211 (2012)

    Google Scholar 

  76. Soares, S., Camino, G., Levchik, S.: Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym. Degrad. Stab. 49, 275–283 (1995)

    Article  Google Scholar 

  77. Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D.: New biocomposites based on thermoplastic starch and bacterial cellulose. Compos. Sci. Technol. 69, 2163–2168 (2009)

    Article  Google Scholar 

  78. Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C.: Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites. Energy Procedia 56, 211–218 (2014)

    Article  Google Scholar 

  79. Johnson, D.C., Neogi, A.N.: Sheeted products formed from reticulated microbial cellulose. US Patent 4863565 (1989)

  80. Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)

    Article  Google Scholar 

  81. Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf, P.: Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stab. 59(1–3), 93–99 (1998)

    Article  Google Scholar 

  82. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuel 3, 10 (2010)

    Article  Google Scholar 

  83. Kong, F.L., Zhang, M.W., Kuang, R.B., Yu, S.J., Chi, J.W., Wei, Z.C.: Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn.). Carbohydr. Polym. 81, 612–616 (2010)

    Article  Google Scholar 

  84. Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S.J., Shi, J., Yi, C.: Antioxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem. 119, 753–757 (2010)

    Article  Google Scholar 

  85. Czaja, W., Romanovicz, D., Brown, R.M. Jr.: Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 11, 403–411 (2004)

    Article  Google Scholar 

  86. Hirai, A., Tsuji, M., Horii, F.: Culture conditions producing structure entities composed of cellulose I and II in bacterial cellulose. Cellulose 4(3), 239–245 (1997)

    Article  Google Scholar 

  87. Pa’e, N., Hamid, N.I.A., Khairuddin, N., Zahan, K.A., Seng, K.F., Siddique, B.M., Muhamad, I.I.: Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of Nata de Coco. Sains Malays. 43(5), 767–773 (2014)

    Google Scholar 

  88. Teeäär, R., Serimaa, R., Paakkari, T.: Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull. 17, 231–237 (1987)

    Article  Google Scholar 

  89. Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R.: Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by X-ray scattering. Cellulose 16, 999–1015 (2009)

    Article  Google Scholar 

  90. Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M.: Preparation and characterization of microcrystalline cellulose (MCC). BioResources 4, 1359–1371 (2009)

    Google Scholar 

Download references

Acknowledgements

This project was supported by Gaziosmanpasa University, Scientific Research Projects Fund (Project No: 2015/128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Akpınar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güzel, M., Akpınar, Ö. Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste Biomass Valor 10, 2165–2175 (2019). https://doi.org/10.1007/s12649-018-0241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0241-x

Keywords

Navigation