Production and Characterization of Bacterial Cellulose from Citrus Peels

Original Paper


Cellulose is the most common polymer in the world, formed by β-1,4 linked glucopyranose units. In this study, citrus peels (lemon, mandarin, orange and grapefruit) were used for the production of bacterial cellulose (BC). The peels were hydrolyzed with dilute acid and hydrolysates were used for BC production. The production of BC was carried out at 28–32 °C for 21 days under static conditions with Komagataeibacter hansenii GA2016. BC yields were found to be between 2.06 and 3.92%. It was found that the FTIR spectra of the BCs produced in citrus peel hydrolysates were similar to BC produced in the commercially available nutrients. The result of this study showed that all the BCs produced from citrus peels were characterized to have high water holding capacity, thin fiber diameter, high the thermal stability and high crystallinity.


Bacterial cellulose Citrus peels Komagataeibacter hansenii Waste valorization 



This project was supported by Gaziosmanpasa University, Scientific Research Projects Fund (Project No: 2015/128).


  1. 1.
    Lynd, L.R., Weimer, P.J., Van Zyl, W.H.: Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3), 506–577 (2002)CrossRefGoogle Scholar
  2. 2.
    Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 44(22), 3358–3393 (2005)CrossRefGoogle Scholar
  3. 3.
    Brown, R.M.: Cellulose structure and biosynthesis: what is in store for the 21th century. J. Polym. Sci. A 42, 487–495 (1991)CrossRefGoogle Scholar
  4. 4.
    Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., Sun, D.: Recent advances in bacterial cellulose. Cellulose 21(1), 1–30 (1991)CrossRefGoogle Scholar
  5. 5.
    Perez, S., Samain, D.: Structure and engineering of celluloses. Adv. Carbohydr. Chem. Biochem. 64, 25–116 (2010)CrossRefGoogle Scholar
  6. 6.
    Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska, H.: Bacterial cellulose. In: Steinbuchel, A. (ed.), Biopolymers: Polysaccharides I., vol. 7, pp. 37–90. Wiley, Munster (2000)Google Scholar
  7. 7.
    Ross, P., Mayer, R., Benziman, M.: Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55(1), 35–58 (1991)Google Scholar
  8. 8.
    Iguchi, M., Yamanaka, S., Budhiono, A.: Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (1991)CrossRefGoogle Scholar
  9. 9.
    Ng, C., Sheu, F., Wang, C., Shyu, Y.: Fermentation of Monascus purpureus on agri-by-products to make colorful and functional bacterial cellulose (NATA). Microbiol. Indones. 4(1), 6–10 (2004)Google Scholar
  10. 10.
    Shi, Z., Zhang, Y., Phillips, G.O., Yang, G.: Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014)CrossRefGoogle Scholar
  11. 11.
    Zhu, H., Jia, S., Yang, H., Tang, W., Jia, Y., Tan, Z.: Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with polylysine. Food Sci. Biotechnol. 19, 1479–1484 (2014)CrossRefGoogle Scholar
  12. 12.
    Shah, J., Brown, R.M. Jr.: Towards electronic displays made from microbial cellulose. Appl. Microbiol. Biotechnol. 66(4), 352–355 (2005)CrossRefGoogle Scholar
  13. 13.
    Çakar, F., Özer, İ, Aytekin, A.O., Şahin, F.: Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr. Polym. 106, 7–13 (2014)CrossRefGoogle Scholar
  14. 14.
    Chen, P., Cho, S.Y., Jin, H.J.: Modification and applications of bacterial celluloses in polymer science. Macromol. Res. 18, 309–320 (2010)CrossRefGoogle Scholar
  15. 15.
    Saibuatong, O.A., Phisalaphong, M.: Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr. Polym. 79(2), 455–460 (2010)CrossRefGoogle Scholar
  16. 16.
    Dahman, Y.: Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J. Nanosci. Nanotechnol. 9, 5105–5122 (2009)CrossRefGoogle Scholar
  17. 17.
    Yamanaka, S., Sugiyama, J.: Structural modification of bacterial cellulose. Cellulose 7(3), 213–225 (2000)CrossRefGoogle Scholar
  18. 18.
    Keshk, S.M.A.S.: Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr. Polym. 99, 98–100 (2014)CrossRefGoogle Scholar
  19. 19.
    Castro, C., Zuluaga, R., Putaux, J.L., Caroa, G., Mondragon, I., Ganán, P.: Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr. Polym. 84(1), 96–102 (2011)CrossRefGoogle Scholar
  20. 20.
    Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F.: Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3), 187–200 (1998)CrossRefGoogle Scholar
  21. 21.
    Lin, K.W., Lin, H.Y.: Quality characteristics of Chinesestyle meatball containing bacterial cellulose (Nata). J. Food Sci. 69, 107–111 (2004)Google Scholar
  22. 22.
    Stephens, S.R., Westland, J.A., Neogi, A.N.: Method of using bacterial cellulose as a dietary fiber component. US patent 4960763 (1990)Google Scholar
  23. 23.
    Guo, X., Cavka, A., Jönsson, L.J., Hong, F.: Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb. Cell Fact. 12, 93 (2013)CrossRefGoogle Scholar
  24. 24.
    Charreau, H., Foresti, M.L., Vazquez, A.: Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol. 7, 56–80 (2013)CrossRefGoogle Scholar
  25. 25.
    Lin, D., Sanchez, P.L., Li, R., Li, Z.: Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113–119 (2014)CrossRefGoogle Scholar
  26. 26.
    Carreira, P., Mendes, J.A., Trovatti, E., Serafim, L.S., Freire, C.S., Silvestre, A.J., Neto, C.P.: Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour. Technol. 102, 7354–7360 (2011)CrossRefGoogle Scholar
  27. 27.
    Uraki, Y., Morito, M., Kishimoto, T., Sano, Y.: Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56, 341–347 (2002)CrossRefGoogle Scholar
  28. 28.
    Bae, S., Shoda, M.: Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 67, 45–51 (2005)CrossRefGoogle Scholar
  29. 29.
    Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu, V.: Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J. Microb. Biochem. Technol. 5, 31–33 (2013)Google Scholar
  30. 30.
    Hong, F., Qiu, K.: An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr. Polym. 72, 545–549 (2008)CrossRefGoogle Scholar
  31. 31.
    Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C.: Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. C. 29, 546–551 (2009)CrossRefGoogle Scholar
  32. 32.
    Hong, F., Guo, X., Zhang, S., Han, S.F., Yang, G., Jönsson, L.J.: Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour. Technol. 104, 503–508 (2012)CrossRefGoogle Scholar
  33. 33.
    Zeng, X., Liu, J., Chen, J., Wang, Q., Li, Z., Wang, H.: Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 38, 1993–1999 (2011)CrossRefGoogle Scholar
  34. 34.
    Usha, R.M., Appaiah, K.A.: Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. J. Microbiol. Biotechnol. 21, 739–745 (2011)CrossRefGoogle Scholar
  35. 35.
    Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Freire, C.S.R.: Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55, 205–211 (2013)CrossRefGoogle Scholar
  36. 36.
    Mohammadkazemi, F., Azin, M., Ashori, A.: Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117, 518–523 (2015)CrossRefGoogle Scholar
  37. 37.
    Kızıltaş, E.E., Kızıltaş, A., Gardner, D.J.: Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124, 131–138 (2015)CrossRefGoogle Scholar
  38. 38.
    Pinzon, K.M., Rodriguez, M.C., Sandova, E.R.: Effect of drying conditions on the physical properties of impregnated orange peel. Braz. J. Chem. Eng. 30(3), 667–676 (2013)CrossRefGoogle Scholar
  39. 39.
    Agriculture Production Data. (2016). Accessed 16 Aug 2016
  40. 40.
    TUIK: Crop Production Statistics. (2015). Accessed 16 Aug 2016
  41. 41.
    Bitkisel Üretim İstatistikleri. (2015). Accessed 16 Aug 2016
  42. 42.
    Marin, F.R., Soler-Rivas, C., Benavente-Garcia, O., Castillo, J., Perez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100(2), 736–741 (2007)CrossRefGoogle Scholar
  43. 43.
    Crupi, M.L., Costa, R., Dugo, P., Dugo, G., Mondello, L.: A comprehensive study on the chemical composition and aromatic characteristics of lemon liquor. Food Chem. 105(2), 771–783 (2007)CrossRefGoogle Scholar
  44. 44.
    Peel: (fruit). (2014). Accessed 16 Aug 2016
  45. 45.
    Başer, H.C.: Tıbbi ve aromatik bitkilerin ilaç ve alkollü içki sanayilerinde kullanımı, Istanbul Technical University Publications, Publication no: 1997-39, İstanbul (1997)Google Scholar
  46. 46.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  47. 47.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  48. 48.
    Canettieri, E.V., Moraes Rocho, G.J., Carvalho, K.A. Jr., Almeida de Silva, J.B.: Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour. Technol. 98(2), 422–428 (2007)CrossRefGoogle Scholar
  49. 49.
    Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  50. 50.
    Güzel, M., Akpinar, O.: Komagataeibacter hansenii GA2016 ile bakteriyel selüloz üretimi ve karakterizasyonu. J. Food 42(5), 620–633 (2017)Google Scholar
  51. 51.
    Son, C., Chung, S., Lee, J., Kim, S.: Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microbiol. Biotechnol. 12(5), 722–728 (2002)Google Scholar
  52. 52.
    AOAC: Official Methods of Analysis, 15th edn. Association of Analytical Chemists, Arlington, Virginia, (1989)Google Scholar
  53. 53.
    Tappi: Tappi Useful Method UM256. Water Retention Value (WRV), Tappi Useful Methods. Tappi Press, Atlanta (1991)Google Scholar
  54. 54.
    Hermans, P.H., Weidinger, A.: Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J. Appl. Phys. 19(5), 491 (1948)CrossRefGoogle Scholar
  55. 55.
    Fang, L., Catchmark, J.M.: Characterization of water-soluble exopolysaccharide from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21, 3965–3978 (2014)CrossRefGoogle Scholar
  56. 56.
    Mikkelsen, D., Flanagan, B., Dykes, G., Gidley, M.: Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107, 576–583 (2009)CrossRefGoogle Scholar
  57. 57.
    Santos, S.M., CArbajo, J.M., Villar, J.C.: The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gloconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. Bioresources 8(3), 3630–3645 (2013)Google Scholar
  58. 58.
    Miyamoto, H., Tsuduki, M., Ago, M., Yamane, C., Yamane, C., Ueda, M., Okajima, K.: Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Text. Res. J. 84(11), 1147–1158 (2014)CrossRefGoogle Scholar
  59. 59.
    Lin, S.P., Huang, Y.H., Hsu, K.D., Lai, Y.J., Chen, Y.K., Cheng, K.C.: Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr. Polym. 151, 827–833 (2016)CrossRefGoogle Scholar
  60. 60.
    Rodriguez, R., Jiménez, R., Fernández-Bolaños, J., Guillén, R., Heredia, A.: Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 17(1), 3–15 (2006)CrossRefGoogle Scholar
  61. 61.
    Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R.: Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int. Food Res. J. 19(1), 153–158 (2012)Google Scholar
  62. 62.
    Mantanis, G.I., Young, R.A., Rowell, R.M.: Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2, 1–22 (1995)Google Scholar
  63. 63.
    Robertson, A.A.: Cellulose-liquid interactions. Pulp Pap. Mag. Can. 65, 171–178 (1964)Google Scholar
  64. 64.
    Fabio, P.G., Nuno, H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Carmen, S.R.F.: Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55, 205–211 (2013)CrossRefGoogle Scholar
  65. 65.
    Nesic, A.R., Trifunovic, S.S., Grujic, A.S., Velickovic, S.J., Antonovic, D.G.: Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr. Res. 346(15), 2463–2468 (2011)CrossRefGoogle Scholar
  66. 66.
    Sivam, A.S., Sun-Waterhouse, D., Perera, C.O., Waterhouse, G.I.N.: Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 131(3), 802–810 (2012)CrossRefGoogle Scholar
  67. 67.
    Park, J.K., Park, Y.H., Jung, J.Y.: Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol. Bioprocess. Eng. 8(2), 83–88 (2003)CrossRefGoogle Scholar
  68. 68.
    Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y.: Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via ımmobilising ε-polylysine nanocoatings. Food Hydrocoll. 36, 204–211 (2014)CrossRefGoogle Scholar
  69. 69.
    Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized celluloseartificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)CrossRefGoogle Scholar
  70. 70.
    Wan, Y.Z., Hong, L., Jia, S.R., Huang, Y., Zhu, Y., Wang, Y.L., Jiang, H.J.: Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos. Sci. Technol. 66, 1825–1832 (2006)CrossRefGoogle Scholar
  71. 71.
    El-Saied, H., El-Diwany, A., Basta, A.H., Atwa, N.A., El-Ghawas, E.: Economical bacterial cellulose. BioResources 3(4), 1196–1217 (2008)Google Scholar
  72. 72.
    De Souza, C.F., Lucyszyn, N., Woehl, M.A., Riegel-Vidotti, I.C., Borsali, R., Sierakowski, M.R.: Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr. Polym. 93, 144–153 (2013)CrossRefGoogle Scholar
  73. 73.
    Vazquez, A., Foresti, M.L., Cerrutti, P., Galvagno, M.: Bacterial Cellulose fromsimple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21(2), 545–554 (2013)CrossRefGoogle Scholar
  74. 74.
    Ang, A., Ashaari, Z., Bakar, E.S., Ibrahim, N.A.: Characterization and optimization of the glyoxalation of a methanol-fractioned alkali lignin using response surface methodology. Bioresources 10(3), 4795–4810 (2015)Google Scholar
  75. 75.
    Halib, N., Iqbal, M.C., Ahmad, A.M.: I.: Physicochemical properties and characterization of Nata de Coco from local food ındustries as a source of cellulose. Sains Malays. 41(2), 205–211 (2012)Google Scholar
  76. 76.
    Soares, S., Camino, G., Levchik, S.: Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym. Degrad. Stab. 49, 275–283 (1995)CrossRefGoogle Scholar
  77. 77.
    Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D.: New biocomposites based on thermoplastic starch and bacterial cellulose. Compos. Sci. Technol. 69, 2163–2168 (2009)CrossRefGoogle Scholar
  78. 78.
    Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C.: Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites. Energy Procedia 56, 211–218 (2014)CrossRefGoogle Scholar
  79. 79.
    Johnson, D.C., Neogi, A.N.: Sheeted products formed from reticulated microbial cellulose. US Patent 4863565 (1989)Google Scholar
  80. 80.
    Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)CrossRefGoogle Scholar
  81. 81.
    Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf, P.: Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stab. 59(1–3), 93–99 (1998)CrossRefGoogle Scholar
  82. 82.
    Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuel 3, 10 (2010)CrossRefGoogle Scholar
  83. 83.
    Kong, F.L., Zhang, M.W., Kuang, R.B., Yu, S.J., Chi, J.W., Wei, Z.C.: Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn.). Carbohydr. Polym. 81, 612–616 (2010)CrossRefGoogle Scholar
  84. 84.
    Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S.J., Shi, J., Yi, C.: Antioxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem. 119, 753–757 (2010)CrossRefGoogle Scholar
  85. 85.
    Czaja, W., Romanovicz, D., Brown, R.M. Jr.: Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 11, 403–411 (2004)CrossRefGoogle Scholar
  86. 86.
    Hirai, A., Tsuji, M., Horii, F.: Culture conditions producing structure entities composed of cellulose I and II in bacterial cellulose. Cellulose 4(3), 239–245 (1997)CrossRefGoogle Scholar
  87. 87.
    Pa’e, N., Hamid, N.I.A., Khairuddin, N., Zahan, K.A., Seng, K.F., Siddique, B.M., Muhamad, I.I.: Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of Nata de Coco. Sains Malays. 43(5), 767–773 (2014)Google Scholar
  88. 88.
    Teeäär, R., Serimaa, R., Paakkari, T.: Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull. 17, 231–237 (1987)CrossRefGoogle Scholar
  89. 89.
    Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R.: Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by X-ray scattering. Cellulose 16, 999–1015 (2009)CrossRefGoogle Scholar
  90. 90.
    Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M.: Preparation and characterization of microcrystalline cellulose (MCC). BioResources 4, 1359–1371 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Processing, Şiran Mustafa Beyaz Vocational SchoolGümüşhane UniversityGümüşhaneTurkey
  2. 2.Department of Food EngineeringGaziosmanpasa UniversityTokatTurkey

Personalised recommendations