Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment

  • Fabiano Avelino Gonçalves
  • Héctor A. Ruiz
  • Everaldo Silvino dos Santos
  • José A. Teixeira
  • Gorete Ribeiro de Macedo
Original Paper


The search for new sources of lignocellulosic raw materials for the generation of energy and new compounds encourages the search for locations not well known and with a high potential for biomass availability as is the case of the Northeast Region of Brazil. Thus, the cactus (CAC), green coconut shell (GCS), mature coconut fibre and mature coconut shell were pretreated by NaClO2–C2H4O2 and sequential NaClO2–C2H4O2/autohydrolysis aiming at the obtention of high added-value compounds in the liquid fraction and solid phase. The yield of the solid phase was between 61.42 and 90.97% and the reduction up to 91.63% of lignin in the materials pretreated by NaClO2–C2H4O2. After NaClO2–C2H4O2/autohydrolysis pretreatment the obtained solids yield was between 43.57 and 52.08%, with a solubilization of the hemicellulose content up to 81.42%. For both pretreatments the cellulosic content remained almost unchanged. The pretreated solids were characterized by SEM, X-ray and crystallinity indexes showing significant modifications when submitted to pretreatments. These results were further confirmed by the enzymatic conversion yields of 81.68–90.03 and 86.97–90.36% of the LCMs pretreated by NaClO2–C2H4O2 and pretreated by NaClO2–C2H4O2/autohydrolysis, respectively. The resulting liquors had a total phenolic compounds content between 0.20 and 3.05 g/L, lignin recovered up to 7.40 g/L (absence of sulphur) and xylooligosaccharides between 16.13 and 20.37 g/L. Thus, these pretreatments showed an efficient fractionation of LCMs, especially in the GCS, being an important requirement for the generation of products and byproducts in the context of the biorefinery.

Graphical Abstract


Hydrothermal Xylooligosaccharides Phenolic compounds Lignin recovered Enzymatic hydrolysis Biorefinery 



The authors gratefully acknowledge the Brazilian research funding agencies CNPq and CAPES for financial support. Financial support from the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref. 249564) is gratefully acknowledged. We also gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the infrastructure project - INFR201601 (Ref. 269461) and CB-2015-01 (Ref. 254808).


  1. 1.
    Buruiana, C.T., Vizireanu, C., Garrote, G., Parajó, J.C.: Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind. Crops Prod. 54, 32–39 (2014)CrossRefGoogle Scholar
  2. 2.
    Marzialetti, T., Salazar, J.P., Ocampos, C., Chandra, R., Chung, P., Saddler, J., Parra, C.: Second-generation ethanol in Chile: optimization of the autohydrolysis of Eucalyptus globulus. Biomass Convers. Bioref. 4, 125–135 (2014)CrossRefGoogle Scholar
  3. 3.
    Ertas, M., Han, Q., Jameel, H., Chang, H.: Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresour. Technol. 152, 259–266 (2014)CrossRefGoogle Scholar
  4. 4.
    Xiao, X., Bian, J., Li, M.F., Xu, H., Xiao, B., Sun, R.C.: Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour. Technol. 159, 41–47 (2014)CrossRefGoogle Scholar
  5. 5.
    Gonçalves, F.A., Sanjinez-Argandoña, E.J., Fonseca, G.G.: Utilization of agro-industrial residues and municipal waste of plant origin for cellulosic ethanol production. J. Environ. Protect. 2, 1303–1309 (2011)CrossRefGoogle Scholar
  6. 6.
    Malgas, S., Chandra, R., Van Dyk, J.S., Saddler, J.N., Pletschke, B.I.: Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods. Bioresour. Technol. 245, 52–65 (2017)CrossRefGoogle Scholar
  7. 7.
    Siqueira, G., Várnai, A., Ferraz, A., Milagres, A.M.F.: Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl. Energy 102, 399–402 (2013)CrossRefGoogle Scholar
  8. 8.
    Matsushita, Y., Jo, E., Inakoshi, S., Yagami, S., Takamoto, N., Fukushima, K., Lee, S.: Hydrothermal reaction of sulfuric acid lignin generated as a by-product during bioethanol production using lignocellulosic materials to convert bioactive agents. Ind. Crops Prod. 42, 181–188 (2013)CrossRefGoogle Scholar
  9. 9.
    Zamudio, M.A.M., Alfaro, A., de Alva, H.E., García, J.C., García-Moralesa, M., López, F.: Biorefinery of paulownia by autohydrolysis and soda-anthraquinone delignification process. Characterization and application of lignin. J. Chem. Technol. Biotechnol. 90, 534–542 (2015)CrossRefGoogle Scholar
  10. 10.
    Wu, C., Wang, Z., Dupont, V., Huang, J., Williams, P.T.: Nickel-catalysed pyrolysis/gasification of biomass components. J. Anal. Appl. Pyrol. 99, 143–148 (2013)CrossRefGoogle Scholar
  11. 11.
    Egüés, I., Sanchez, C., Mondragon, I., Labidi, J.: Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour. Technol. 103, 239–248 (2012)CrossRefGoogle Scholar
  12. 12.
    Gonçalves, F.A., Ruiz, H.A., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind. Crops Prod. 77, 1–12 (2015)CrossRefGoogle Scholar
  13. 13.
    Parajó, J.C., Garrote, G., Cruz, J.M., Dominguez, H.: Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol. 15(3–4), 115–120 (2004)CrossRefGoogle Scholar
  14. 14.
    Samala, A., Srinivasan, R., Yadav, M.: Comparison of xylo-oligosaccharides production by autohydrolysis of fibers separated from ground corn flour and DDGS. Food Bioprod Process. 94, 354–364 (2015)CrossRefGoogle Scholar
  15. 15.
    Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory. Golden, Colorado (2008)Google Scholar
  16. 16.
    Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)CrossRefGoogle Scholar
  17. 17.
    Garrote, G., Domínguez, H., Parajó, J.C.: Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J. Food Eng. 52, 211–218 (2002)CrossRefGoogle Scholar
  18. 18.
    Ruiz, H.A., Ruzene, D., Silva, D.P., da Silva, F.F., Vicente, A.A., Teixeira, J.A.: Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl. Biochem. Biotechnol. 164(5), 629–641 (2011)CrossRefGoogle Scholar
  19. 19.
    Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  20. 20.
    Gonçalves, F.A., Ruiz, H.A., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew. Energy 94, 353–365 (2016)CrossRefGoogle Scholar
  21. 21.
    Dowe, N., Mcmillan, J.: SSF experimental protocols-lignocellulosic biomass hydrolysis and fermentation. NERL analytical procedure. National Renewable Energy Laboratory, Golden (2001)Google Scholar
  22. 22.
    Gonçalves, F.A., Ruiz, H.A., Nogueira, C.C., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131, 66–76 (2014)CrossRefGoogle Scholar
  23. 23.
    Ding, T.Y., Hii, S.L., Ong, L.G.A.: Comparison of pretreatment strategies for conversion of coconut husk fiber to fermentable sugars. BioResources 7, 1540–1547 (2012)Google Scholar
  24. 24.
    Gulati, I., Park, J., Maken, S., Lee, M.G.: Production of carboxymethylcellulose fibers from waste lignocellulosic sawdust using NaOH/NaClO2 pretreatment. Fibers Polym. 15, 680–686 (2014)CrossRefGoogle Scholar
  25. 25.
    Gullón, B., Yáñez, R., Alonso, J.L., Parajó, J.C.: Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour. Technol. 101, 6676–6684 (2010)CrossRefGoogle Scholar
  26. 26.
    Garrote, G., Cruz, J.M., Moure, A., Domínguez, H., Parajó, J.C.: Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials. Trends Food Sci. Technol. 15, 191–200 (2004)CrossRefGoogle Scholar
  27. 27.
    Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residue and marine biomass according to the biorefinery concept: A review. Renew. Sustain. Energy Rev. 21, 35–51 (2013)CrossRefGoogle Scholar
  28. 28.
    Faustino, H., Gil, N., Baptista, C., Duarte, A.P.: Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15, 9308–9322 (2010)CrossRefGoogle Scholar
  29. 29.
    Kadam, K.L., Chin, C.Y., Brwon, L.W.: Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J. Ind. Microbiol. Biotechnol. 35, 331–341 (2008)CrossRefGoogle Scholar
  30. 30.
    Chuck, C.J., Parker, H.J., Jenkins, R.W., Donnelly, J.: Renewable biofuel additives from the ozonolysis of lignin. Bioresour. Technol. 143, 549–554 (2013)CrossRefGoogle Scholar
  31. 31.
    Fernandes, D.M., Hechenleitner, A.A.W., Job, A.E., Radovanocic, E., Gomez Pineda, E.A.: Thermal and photochemical stability of poly(vinyl alcohol)/modified lignin blends. Polym. Degrad. Stab. 91, 1192–1201 (2006)CrossRefGoogle Scholar
  32. 32.
    Fang, X., Yano, S., Inoue, H., Sawayama, S.: Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 107, 256–261 (2009)CrossRefGoogle Scholar
  33. 33.
    Ghatak, H.R.: Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Ind Crop Prod. 28, 206–212 (2008)CrossRefGoogle Scholar
  34. 34.
    Schorr, D., Diouf, P.N., Tatjana, S.: Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52, 65–73 (2014)CrossRefGoogle Scholar
  35. 35.
    Sun, Y.C., Xu, J.K., Xu, F., Sun, R.C.: Efficient separation and physicochemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Ind. Crops Prod. 47, 77–85 (2013)CrossRefGoogle Scholar
  36. 36.
    Jahan, M.S., Chowdhury, D.A.N., Islam, M.K., Moeiz, S.M.I.: Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour. Technol. 98, 465–469 (2007)CrossRefGoogle Scholar
  37. 37.
    Sun, R., Tomkinson, J., Zhu, W., Wang, S.Q.: Delignification of maize stem by peroxymonosulfuric acid, peroxyformic acid, peracetic acid and hydrogen peroxide. 1. Physicochemical and structural characterization of the solubilized lignins. J. Agric. Food Chem. 48, 1253–1262 (2000)CrossRefGoogle Scholar
  38. 38.
    Faix, O.: Fourier transform infrared spectroscopy. In: Lin, S.Y., Dence, C.W. (eds.) Methods in lignin chemistry, p. 81. Springer, Berlin (1992)Google Scholar
  39. 39.
    Nada, A.A.M.A., Yousef, M.A., Shaffei, K.A., Salah, A.M.: Infrared spectroscopy of some treated lignins. Polym. Degrad. Stab. 62(1), 157–163 (1998)CrossRefGoogle Scholar
  40. 40.
    Tan, S.S.Y., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O.S., Patti, A.F., Pringle, J.M., Scott, J.L.: Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11, 339–345 (2009)CrossRefGoogle Scholar
  41. 41.
    Rencoret, J., Marques, G., Gutiérrez, A.L., Nieto, J., Jiménez-Barbero, A.T., del Río, M.J.C.: Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind. Crops Prod. 30, 137–143 (2009)CrossRefGoogle Scholar
  42. 42.
    Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)CrossRefGoogle Scholar
  43. 43.
    Kim, H.M., Choi, Y., Lee, D., Kim, Y., Bae, H.: Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment. Bioresour. Technol. 236, 194–201 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Fabiano Avelino Gonçalves
    • 1
    • 2
  • Héctor A. Ruiz
    • 3
    • 4
  • Everaldo Silvino dos Santos
    • 1
  • José A. Teixeira
    • 2
  • Gorete Ribeiro de Macedo
    • 1
  1. 1.Laboratory of Biochemical Engineering, Chemical Engineering DepartmentFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  3. 3.Biorefinery Group, Food Research Department, Faculty of Chemistry SciencesAutonomous University of CoahuilaSaltilloMexico
  4. 4.Cluster of BioalcoholsMexican Centre for Innovation in Bioenergy (Cemie-Bio)Mexico CityMexico

Personalised recommendations