Skip to main content

Advertisement

Log in

Characterization of Energy-Rich Hydrochars from Microwave-Assisted Hydrothermal Carbonization of Coconut Shell

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, microwave-assisted hydrothermal carbonization of waste coconut shell (feedstock) is reported. It is a thermo-conversion technique in which the feedstock was transformed into energy-rich carbonaceous material under mild conditions. The process was conducted in a microwave oven by heating the waste coconut shell in deionized water inside a pressurized vessel. The effects of different process conditions on the product yields, and the energy properties of the hydrochars were studied by varying the reaction temperature from 150 to 200 °C and residence time from 5 to 30 min. The results showed that there was transformation of the feedstock in the process due to the decarboxylation, dehydration, and demethanation reactions. This led to changes in the chemical and structural compositions, as well as increase in the energy properties of the prepared hydrochars. The higher heating value increased from 15.06 MJ/kg in the feedstock to 19.76 MJ/kg in the hydrochar. The energy properties of the hydrochars prepared in this study showed that microwave-assisted hydrothermal carbonization process could be a technique for converting waste coconut shell into high value-added product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Figure used with permission for reproduction obtained from Elsevier [License Number: 4197200736298]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asomaning, J., Mussone, P., Bressler, D.C.: Two-stage thermal conversion of inedible lipid feedstocks to renewable chemicals and fuels. Bioresour. Technol. 158, 55–62 (2014)

    Article  Google Scholar 

  2. Maher, K.D., Bressler, D.C.: Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 98, 2351–2368 (2007)

    Article  Google Scholar 

  3. Asomaning, J., Mussone, P., Bressler, D.C.: Pyrolysis of polyunsaturated fatty acids. Fuel Process Technol. 120, 89–95 (2014)

    Article  Google Scholar 

  4. Elaigwu, S.E., Greenway, G.M.: Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties. Fuel Process Technol. 149, 305–312 (2016)

    Article  Google Scholar 

  5. Liu, F., Gao, M.: Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J. Mater. Sci. 50, 1624–1631 (2015)

    Article  Google Scholar 

  6. Elaigwu, S.E., Greenway, G.M.: Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose. Int. J. Ind. Chem. 7, 449–456 (2016)

    Article  Google Scholar 

  7. Elaigwu, S.E., Greenway, G.M.: Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrolysis 118, 1–8 (2016)

    Article  Google Scholar 

  8. Guiotoku, M., Rambo, C.R., Hansel, F.A., Magalhaes, W.L.E., Hotza, D.: Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater. Lett. 63, 2707–2709 (2009)

    Article  Google Scholar 

  9. Li, M.F., Shen, Y., Sun, J.K., Bian, J., Chen, C.Z., Sun, R.C.: Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain. Chem. Eng. 3, 2022–2029 (2015)

    Article  Google Scholar 

  10. Elaigwu, S.E.: Pollution reduction with processed waste materials. PhD thesis, Department of Chemistry, University of Hull, United Kingdom (2013)

  11. Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., Xia, H.: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind. Crop Prod. 28, 190–198 (2008)

    Article  Google Scholar 

  12. Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., Duan, X.: Preparation of high surface area activated carbon from coconut shell using microwave heating. Bioresour. Technol. 101, 6163–6169 (2010)

    Article  Google Scholar 

  13. Hu, Z., Srinivasan, M.P.: Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 27, 11–18 (1999)

    Article  Google Scholar 

  14. Elaigwu, S.E., Rocher, V., Kyriakou, G., Greenway, G.M.: Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydro-thermal carbonization of Prosopis africana shell. J. Ind. Eng. Chem. 20, 3467–3473 (2014)

    Article  Google Scholar 

  15. Sevilla, M., Macia-Agullo, J.A., Fuertes, A.B.: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg. 35, 3152–3159 (2011)

    Article  Google Scholar 

  16. Falco, C., Baccile, N., Titirici, M.M.: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13, 3273–3281 (2011)

    Article  Google Scholar 

  17. Kang, S., Li, X., Fan, J., Chang, J.: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind. Eng. Chem. Res. 51, 9023–9031 (2012)

    Article  Google Scholar 

  18. Berge, N.D., Ro, K.S., Mao, J., Flora, J.R.V., Chappell, M.A., Bae, S.: Hydrothermal carbonization of municipal waste streams. Environ. Sci. Technol. 45, 5696–5703 (2011)

    Article  Google Scholar 

  19. Gao, P., Zhou, Y., Meng, F., Zhang, Y., Liu, Z., Zhang, W., Xue, G.: Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97, 238–245 (2016)

    Article  Google Scholar 

  20. Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod. Biorefin. 4, 160–177 (2010)

    Article  Google Scholar 

  21. Reza, M.T., Lynam, J.G., Uddin, M.H., Coronella, C.J.: Hydrothermal carbonization: fate of inorganics. Biomass Bioenerg. 49, 86–94 (2013)

    Article  Google Scholar 

  22. Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., Felix, L.: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefin. 3, 113–126 (2012)

    Article  Google Scholar 

  23. Reza, M.T., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Coronella, C.J.: Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Convers. Biorefin. 4, 311–321 (2014)

    Article  Google Scholar 

  24. Reza, M.T., Nover, J., Wirth, B., Coronella, C.J.: Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials. AIMS Energy 4, 173–189 (2016)

    Article  Google Scholar 

  25. Antal, M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)

    Article  Google Scholar 

  26. Liu, H.-M., Xie, X.-A., Li, M.-F., Sun, R.-C.: Hydrothermal liquefaction of cypress: effects of reaction conditions on 5-lump distribution and composition. J. Anal. Appl. Pyrolysis 94, 177–183 (2012)

    Article  Google Scholar 

  27. Saqib, N.U., Oh, M., Jo, W., Park, S.K., Lee, J.Y.: Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC). J. Mater. Cycle Waste Manag. 19, 111–117 (2017)

    Article  Google Scholar 

  28. Parshetti, G.K., Hoekman, S.K., Balasubramanian, R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 135, 683–689 (2013)

    Article  Google Scholar 

  29. Xu, Q., Qian, Q., Quek, A., Ai, N., Zeng, G., Wang, J.: Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain. Chem. Eng. 1, 1092–1101 (2013)

    Article  Google Scholar 

  30. Liu, Z.G., Quek, A., Hoekman, S.K., Balasubramanian, R.: Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949 (2013)

    Article  Google Scholar 

  31. Jamari, S.S., Howse, J.R.: The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenerg. 47, 82–90 (2012)

    Article  Google Scholar 

  32. Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289 (2009)

    Article  Google Scholar 

  33. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–33 (2012)

    Article  Google Scholar 

  34. Islam, M.A., Kabir, G., Asif, M., Hameed, B.H.: Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresour. Technol. 194, 14–20 (2015)

    Article  Google Scholar 

  35. Haykiri-Acma, H., Yaman, S., Kucukbayrak, S.: Comparison of the thermal re-activities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol. 91, 759–764 (2010)

    Article  Google Scholar 

  36. Yang, H., Yan, R., Chen, H., Lee, D., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  37. Álvarez-Murillo, A., Ledesma, B., Román, S., Sabio, E., Gañán, J.: Biomass pyrolysis toward hydrocarbonization. Influence on subsequent steam gasification processes. J. Anal. Appl. Pyrolysis 113, 380–389 (2015)

    Article  Google Scholar 

  38. Guiotoku, M., Rambo, C.R., Hotza, D.: Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J. Therm. Anal. Calorim. 117, 269–275 (2014)

    Article  Google Scholar 

  39. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., et al.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  40. Fuertes, A.B., Arbestain, M.C., Sevilla, M., Maciaí-Agulloí, J.A., Fiol, S., Loípez, R., et al.: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 48, 618–626 (2010)

    Article  Google Scholar 

  41. Mochidzuki, K., Sato, N., Sakoda, A.: Production and characterization of carbonaceous adsorbents from biomass wastes by aqueous phase carbonization. Adsorption 11, 669–673 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Petroleum Technology Development Fund (PTDF), Nigeria for PhD studentship of Dr. Sunday E. Elaigwu. We also wish to thank Bob Knight of the Department of Chemistry, University of Hull for his assistance with CEM microwave oven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday E. Elaigwu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elaigwu, S.E., Greenway, G.M. Characterization of Energy-Rich Hydrochars from Microwave-Assisted Hydrothermal Carbonization of Coconut Shell. Waste Biomass Valor 10, 1979–1987 (2019). https://doi.org/10.1007/s12649-018-0209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0209-x

Keywords

Navigation