Skip to main content
Log in

Solvothermal Liquefaction of Corn Stalk: Physico-Chemical Properties of Bio-oil and Biochar

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study investigated the conversion of corn stalk to bio-oil by solvothermal liquefaction using ethanol as a solvent. Effect of reaction temperature, time and solvent to biomass ratio on the yield and the properties of bio-oil and biochar was studied. Analysis of corn stalk and bio-oil were done to determine the surface functional groups, existing bonds and molecular structure of specified compounds. Investigations were done to identify different compounds in bio-oil, the thermal stability, and weight loss kinetics of biochar. Study shows that percentage yield of bio-oil increases with increase in temperature and time, up to a specific level, and then starts declining. Further, the heating value, carbon content, and fixed carbon content of both bio-oil and biochar increased to 30.52, 22.8 MJ/kg, and 66.42 and 61.25%, 26.10 and 27.97% respectively from those (19.55 MJ/kg, 51.12 and 6.36%) of the corn stalk. This study suggests that the bio-oil contained mostly phenolic compounds and its derivatives. Two major DTG peaks were observed at 380 and 620 °C indicating the improvement in thermal stability of the biochar after solvolysis liquefaction process. Investigation results can be very useful in optimizing process parameters for solvothermal liquefaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Molino, A., Chianese, S., Musmarra, D.: Biomass gasification technology: the state of the art overview. J. Energy Chem. 25(1), 10–25 (2016)

    Article  Google Scholar 

  2. Abate, S., et al.: The energy-chemistry nexus: a vision of the future from sustainability perspective. J. Energy Chem. 24(5), 535–547 (2015)

    Article  Google Scholar 

  3. Reddy, N., Yang, Y.: Natural Cellulose Fibers from Corn Stover. In: Innovative Biofibers from Renewable Resources, pp. 5–8. Springer, Berlin (2015)

  4. Sui, W., Chen, H.: Study on loading coefficient in steam explosion process of corn stalk. Biores. Technol. 179, 534–542 (2015)

    Article  Google Scholar 

  5. Guo, S., et al.: Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. J. Anal. Appl. Pyrol. 116, 1–9 (2015)

    Article  Google Scholar 

  6. Li, R., et al.: Effects of chemical–biological pretreatment of corn stalks on the bio-oils produced by hydrothermal liquefaction. Energy Convers. Manag. 93, 23–30 (2015)

    Article  Google Scholar 

  7. Kumar, S., et al.: Liquefaction of lignocellulose in fractionated light bio-oil: proof of concept and techno-economic assessment. ACS Sustain. Chem. Eng. 3(9), 2271–2280 (2015)

    Article  Google Scholar 

  8. Wang, M., Xu, C., Leitch, M.: Liquefaction of cornstalk in hot-compressed phenol–water medium to phenolic feedstock for the synthesis of phenol–formaldehyde resin. Bioresour. Technol. 100(7), 2305–2307 (2009)

    Article  Google Scholar 

  9. Beauchet, R., et al.: Hydroliquefaction of green wastes to produce fuels. Biores. Technol. 102(10), 6200–6207 (2011)

    Article  Google Scholar 

  10. Liu, Z., Zhang, F.-S.: Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 49(12), 3498–3504 (2008)

    Article  Google Scholar 

  11. D’Souza, J., et al.: Solvolytic liquefaction of bark: understanding the role of polyhydric alcohols and organic solvents on polyol characteristics. ACS Sustain. Chem. Eng. 4(3), 851–861 (2016)

    Article  Google Scholar 

  12. Cheng, S., et al.: Highly efficient liquefaction of woody biomass in hot-compressed alcohol–water co-solvents. Energy Fuels. 24(9), 4659–4667 (2010)

    Article  Google Scholar 

  13. Saisu, M., et al.: Conversion of lignin with supercritical water–phenol mixtures. Energy Fuels. 17(4), 922–928 (2003)

    Article  Google Scholar 

  14. Li, R., et al.: Sub-supercritical liquefaction of rice stalk for the production of bio-oil: effect of solvents. Bioresour. Technol. 198, 94–100 (2015)

    Article  Google Scholar 

  15. Liu, H.-M., et al.: 8-Lump reaction pathways of cornstalk liquefaction in sub-and super-critical ethanol. Ind. Crops Prod. 35(1), 250–256 (2012)

    Article  Google Scholar 

  16. Wang, T., Yin, J., Zheng, Z.: Effects of chemical inhomogeneity of corn stalk on solvolysis liquefaction. Carbohyd. Polym. 87(4), 2638–2641 (2012)

    Article  Google Scholar 

  17. Yuan, X., et al.: Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents. Energy. 36(11), 6406–6412 (2011)

    Article  Google Scholar 

  18. Fan, S.-P., et al.: Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents. Biores. Technol. 102(3), 3521–3526 (2011)

    Article  Google Scholar 

  19. Li, R., et al.: Production of bio-oil from rice stalk supercritical ethanol liquefaction combined with the torrefaction process. Energy Fuels. 28(3), 1948–1955 (2014)

    Article  Google Scholar 

  20. Peng, X., et al.: Effect of process parameters on solvolysis liquefaction of Chlorella pyrenoidosa in ethanol–water system and energy evaluation. Energy Convers. Manag. 117, 43–53 (2016)

    Article  Google Scholar 

  21. Yu, G., et al.: Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil. Trans. ASABE. 54(1), 239–246 (2011)

    Article  MathSciNet  Google Scholar 

  22. Chen, Y., et al.: Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water. Bioresour. Technol. 124, 190–198 (2012)

    Article  Google Scholar 

  23. Reddy, H.K., et al.: ASI: Hydrothermal extraction and characterization of bio-crude oils from wet chlorella sorokiniana and dunaliella tertiolecta. Environ. Progr. Sustain. Energy. 32(4), 910–915 (2013)

    Article  Google Scholar 

  24. Huang, H.-j., et al.: Thermochemical liquefaction of rice husk for bio-oil production with sub-and supercritical ethanol as solvent. J. Anal. Appl. Pyrol. 102, 60–67 (2013)

    Article  Google Scholar 

  25. Huang, H., et al.: Thermochemical liquefaction characteristics of microalgae in sub-and supercritical ethanol. Fuel Process. Technol. 92(1), 147–153 (2011)

    Article  Google Scholar 

  26. Huang, H.-j., et al.: Thermochemical liquefaction characteristics of sewage sludge in different organic solvents. J. Anal. Appl. Pyrol. 109, 176–184 (2014)

    Article  Google Scholar 

  27. Kang, S., et al.: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind. Eng. Chem. Res. 51(26), 9023–9031 (2012)

    Article  Google Scholar 

  28. Cheng, S., et al.: Highly efficient liquefaction of woody biomass in hot-compressed alcohol–water co-solvents. Energy Fuels. 24(9), 4659–4667 (2010)

    Article  Google Scholar 

  29. Kean, C.W., Sahu, J.N., Daud, W.W.: Hydrothermal gasification of palm shell biomass for synthesis of hydrogen fuel. BioResources. 8(2), 1831–1840 (2013)

    Article  Google Scholar 

  30. Abnisa, F., Daud, W.W., Sahu, J.: Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenerg. 35(8), 3604–3616 (2011)

    Article  Google Scholar 

  31. Li, D., et al.: Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresour. Technol. 104, 737–742 (2012)

    Article  Google Scholar 

  32. Briones, R., et al.: Polyols obtained from solvolysis liquefaction of biodiesel production solid residues. Chem. Eng. J. 175, 169–175 (2011)

    Article  Google Scholar 

  33. Hafez, I.: Rapid liquefaction of giant miscanthus feedstock in ethanol–water system for production of biofuels. Energy Convers. Manag. 91, 219–224 (2015)

    Article  Google Scholar 

  34. Liu, Y., et al.: Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Process. Technol. 112, 93–99 (2013)

    Article  Google Scholar 

  35. Zhu, Z., et al.: Analysis of product distribution and characteristics in hydrothermal liquefaction of barley straw in subcritical and supercritical water. Environ. Progr. Sustain. Energy. 33(3), 737–743 (2014)

    Article  Google Scholar 

  36. Sevilla, M., Macia-Agullo, J.A., Fuertes, A.B.: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg. 35(7), 3152–3159 (2011)

    Article  Google Scholar 

  37. Liu, H.-M., Feng, B., Sun R.-C.: Enhanced bio-oil yield from liquefaction of cornstalk in sub-and supercritical ethanol by acid–chlorite pretreatment. Ind. Eng. Chem. Res. 50(19), 10928–10935 (2011)

    Article  Google Scholar 

  38. Marx, S., Chiyanzu, I., Piyo N.: Influence of reaction atmosphere and solvent on biochar yield and characteristics. Biores. Technol. 164, 177–183 (2014)

    Article  Google Scholar 

  39. do Socorro Vale, M., Lopes, G.S., Gouveia, S.T.: The development of a digestion procedure for the determination of metals in gum obtained from deposits in internal combustion engines by ICP–OES. Fuel. 88(10), 1955–1960 (2009)

    Article  Google Scholar 

  40. Man, Y.C., Mirghani, M.E.S.: Rapid method for determining moisture content in crude palm oil by fourier transform infrared spectroscopy. J. Am. Oil. Chem. Soc. 77(6), 631–637 (2000)

    Article  Google Scholar 

  41. Park, J., et al.: Recovery of Pd (II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. J. Hazard. Mater. 181(1), 794–800 (2010)

    Article  Google Scholar 

  42. Zhu, Z., et al.: Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Appl. Energy. 137, 183–192 (2015)

    Article  Google Scholar 

  43. Nizamuddin, S., et al.: Synthesis and characterization of hydrochars produced by hydrothermal carbonization of oil palm shell. Can. J. Chem. Eng. 93(11), 1916–1921 (2015)

    Article  Google Scholar 

  44. Sabzoi, N.Y., Jayakumar, E.K., Sahu, N.S., Ganesan, J.N., Mubarak, P., Mazari, N.M., Shaukat, A.: An optimisation study for catalytic hyfrolysis of oil palm shell using response surface methodology. J. Oil Palm Res. 47(4), 339–351 (2015)

    Google Scholar 

  45. Sun, P., et al.: Direct liquefaction of paulownia in hot compressed water: influence of catalysts. Energy. 35(12), 5421–5429 (2010)

    Article  Google Scholar 

  46. Lapuerta, M.n., Hernandez, J.J., Rodríguez J.n.: Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenerg. 27(4), 385–391 (2004)

  47. Mohammed, M., et al.: Gasification of oil palm empty fruit bunches: a characterization and kinetic study. Biores. Technol. 110, 628–636 (2012)

    Article  Google Scholar 

  48. Nizamuddin, S., et al.: Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel. 163, 88–97 (2016)

    Article  Google Scholar 

  49. Asadieraghi, M., Daud, W.M.A.W.: Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers. Manag. 82, 71–82 (2014)

    Article  Google Scholar 

  50. Koufopanos, C., Lucchesi, A., Maschio, G.: Kinetic modelling of the pyrolysis of biomass and biomass components. Can. J. Chem. Eng. 67(1), 75–84 (1989)

    Article  Google Scholar 

  51. Yuan, X., et al.: Sub-and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture. Energy. 32(11), 2081–2088 (2007)

    Article  Google Scholar 

  52. Murnieks, R., et al.: Hydrotreating of wheat straw in toluene and ethanol. Bioresour. Technol. 163, 106–111 (2014)

    Article  Google Scholar 

  53. Zhang, J., Zhang, Y.: Hydrothermal liquefaction of microalgae in an ethanol–water co-solvent to produce biocrude oil. Energy Fuels. 28(8), 5178–5183 (2014)

    Article  Google Scholar 

  54. Kosinkova, J., et al.: Hydrothermal liquefaction of bagasse using ethanol and black liquor as solvents. Biofuels, Bioprod. Biorefin. 9(6), 630–638 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabzoi Nizamuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizamuddin, S., Baloch, H.A., Mubarak, N.M. et al. Solvothermal Liquefaction of Corn Stalk: Physico-Chemical Properties of Bio-oil and Biochar. Waste Biomass Valor 10, 1957–1968 (2019). https://doi.org/10.1007/s12649-018-0206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0206-0

Keywords

Navigation