Waste and Biomass Valorization

, Volume 9, Issue 7, pp 1181–1189 | Cite as

Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product?

  • Harpreet Singh Kambo
  • Jamie Minaret
  • Animesh Dutta
Original Paper


Hydrothermal carbonization (HTC) is a promising method for the production of energy dense coal-like material from low quality lignocellulosic biomass. The process takes place in the presence of water and therefore is unaffected by feedstocks containing a high moisture content. However, the substantial water requirement and disposal concerns for a large scale HTC plant may outweigh its advantages from an economical and environmental point of view. The work presented in this study proposes a solution to the aforementioned problem. Miscanthus feedstock was treated hydrothermally at three different reaction temperatures (190, 225, and 260 °C) for 5 min with a solid load ratio of 1:6. The liquid by-product from each experiment was characterized for chemical composition. The results show that the HTC process water was rich in organic acids (acetic, formic, levulinic, and glycolic acid), Hydroxy-methyl-furfural (HMF), and total organic carbon (TOC). The acidity and the concentration of intermediate products in the HTC process water increased with an increase in reaction temperature. The HTC process water produced at 260 °C was examined for the recirculation of process water. The results show that, during successive recirculation of HTC process water, the mass yield of the hydrochar samples increases by 5–10% and the energy yield of the hydrochar samples increased up to 15% compared to the HTC-reference sample (hydrochar sample produced at initial run). Most importantly, the HHV of hydrochars increased from 18.9 (raw biomass) to 26.6 MJ/kg (maximal value) during recirculation of process water. As a result, the recirculation of process water can increase the overall system’s efficiency and reduce both the operating costs and environmental impact of a commercial HTC plant.


Hydrothermal carbonization Organic acids Recirculation Process water 



The authors would like to gratefully acknowledge research grants from Natural Sciences and Engineering Research Council of Canada (NSERC, Grant No. 400495), and Ministry of the Environment for Best in Science program (Project #1314010).


  1. 1.
    Roy, M.M., Dutta, A., Corscadden, K., Havard, P., Dickie, L.: Review of biosolids management options and co-incineration of a biosolid-derived fuel. Waste Manage. 31(11), 2228–2235 (2011)CrossRefGoogle Scholar
  2. 2.
    Demirbas, A.: Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30(2), 219–230 (2004)CrossRefGoogle Scholar
  3. 3.
    Kambo, H.S., Dutta, A.: A comparative Review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378 (2014)CrossRefGoogle Scholar
  4. 4.
    Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties†. Energy Fuels 24(9), 4638–4645 (2010)CrossRefGoogle Scholar
  5. 5.
    Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., Kern, J.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1), 71–106 (2011)CrossRefGoogle Scholar
  6. 6.
    Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 4(2), 160–177 (2010)CrossRefGoogle Scholar
  7. 7.
    Hoekman, S.K., Broch, A., Robbins, C.: Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25(4), 1802–1810 (2011)CrossRefGoogle Scholar
  8. 8.
    Reza, M.T., Yan, W., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Coronella, C.J., Vásquez, V.R.: Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour. Technol. 139, 161–169 (2013)CrossRefGoogle Scholar
  9. 9.
    Yan, W., Acharjee, T.C., Coronella, C.J., Vásquez, V.R.: Thermal pretreatment of lignocellulosic biomass. Environ. Prog. Sustain. Energy 28(3), 435–440 (2009). doi: 10.1002/ep.10385 CrossRefGoogle Scholar
  10. 10.
    Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., Kern, J.: Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 102(19), 9255–9260 (2011)CrossRefGoogle Scholar
  11. 11.
    Liu, Z., Quek, A., Kent Hoekman, S., Balasubramanian, R.: Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel. 103(0), 943–949 (2013)CrossRefGoogle Scholar
  12. 12.
    Kambo, H., Dutta, A.: Hydrothermal carbonization (HTC): An innovative process for the conversion of low quality lignocellulosic biomass to hydrochar for replacing coal. In: Proceedings of the 9th Annual Green Energy Conference (IGEC-IX) Tianjin, China May 25–28 (2014)Google Scholar
  13. 13.
    Stemann, J., Erlach, B., Ziegler, F.: Hydrothermal carbonisation of empty palm oil fruit bunches: laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste and Biomass Valoriz. 4(3), 441–454 (2013). doi: 10.1007/s12649-012-9190-y CrossRefGoogle Scholar
  14. 14.
    Wirth, B., Mumme, J.: Anaerobic digestion of waste water from hydrothermal carbonization of corn silage. Appl. Bioenerg. 1, 1–10 (2013)Google Scholar
  15. 15.
    Ruiz, H.A., Rodriguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew. Sustain. Energy Rev. 21, 35–51 (2013)CrossRefGoogle Scholar
  16. 16.
    Berge, N.D., Ro, K.S., Mao, J., Flora, J.R., Chappell, M.A., Bae, S.: Hydrothermal carbonization of municipal waste streams. Environ. Sci. Technol. 45(13), 5696–5703 (2011)CrossRefGoogle Scholar
  17. 17.
    Hoekman, S.K., Broch, A., Robbins, C., Purcell, R., Zielinska, B., Felix, L., Irvin, J.: Process development unit (PDU) for hydrothermal carbonization (HTC) of lignocellulosic biomass. Waste Biomass Valoriz. 5(4), 669–678 (2014)CrossRefGoogle Scholar
  18. 18.
    Stemann, J., Putschew, A., Ziegler, F.: Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour. Technol. 143, 139–146 (2013)CrossRefGoogle Scholar
  19. 19.
    Uddin, M.H., Reza, M.T., Lynam, J.G., Coronella, C.J.: Effects of water recycling in hydrothermal carbonization of loblolly pine. Environ. Prog. Sustain. Energy. 33(4), 1309–1315 (2014)Google Scholar
  20. 20.
    Brosse, N., Dufour, A., Meng, X., Sun, Q., Ragauskas, A.: Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod. Biorefining 6(5), 580–598 (2012)CrossRefGoogle Scholar
  21. 21.
    Kambo, H.S., Dutta, A.: Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energy. 135, 182–191 (2014)CrossRefGoogle Scholar
  22. 22.
    Yan, W., Hastings, J.T., Acharjee, T.C., Coronella, C.J., Vásquez, V.R.: Mass and energy balances of wet torrefaction of lignocellulosic biomass†. Energy Fuels. 24(9), 4738–4742 (2010). doi: 10.1021/ef901273n CrossRefGoogle Scholar
  23. 23.
    Yuliansyah, A.T., Hirajima, T., Kumagai, S., Sasaki, K.: Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment. Waste Biomass Valoriz. 1(4), 395–405 (2010)CrossRefGoogle Scholar
  24. 24.
    Kambo, H.S., Dutta, A.: Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers. Manage. 105, 746–755 (2015)CrossRefGoogle Scholar
  25. 25.
    Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., Fiori, L.: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 182, 217–224 (2015)CrossRefGoogle Scholar
  26. 26.
    Yu, J., Savage, P.E.: Decomposition of formic acid under hydrothermal conditions. Ind. Eng. Chem. Res. 37(1), 2–10 (1998). doi: 10.1021/ie970182e CrossRefGoogle Scholar
  27. 27.
    Kambo, H.: Energy densification of lignocellulosic biomass via hydrothermal carbonization and torrefaction. MASc. Thesis, University of Guelph, Ontario (2014)Google Scholar
  28. 28.
    Uddin, M.H., Reza, M.T., Lynam, J.G., Coronella, C.J.: Effects of water recycling in hydrothermal carbonization of loblolly pine. Environ. Prog. Sustain. Energy (2013)Google Scholar
  29. 29.
    Castello, D., Kruse, A., Fiori, L.: Low temperature supercritical water gasification of biomass constituents: glucose/phenol mixtures. Biomass Bioenerg. 73, 84–94 (2015)CrossRefGoogle Scholar
  30. 30.
    Asghari, F.S., Yoshida, H.: Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind. Eng. Chem. Res. 45(7), 2163–2173 (2006). doi: 10.1021/ie051088y CrossRefGoogle Scholar
  31. 31.
    van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg. 35(9), 3748–3762 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of EngineeringUniversity of GuelphGuelphCanada
  2. 2.Mechanical Engineering Program, School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations