Waste and Biomass Valorization

, Volume 9, Issue 5, pp 725–730 | Cite as

Enzymatic Biodiesel Production from Manilkara Zapota (L.) Seed Oil

Original Paper

Abstract

Oil obtained from the seeds of Manilkara zapota (L.) was transesterified with methanol using lipases as biocatalysts. Four commercially available lipases, such as, porcine pancreas, Candida rugosa, Pseudomonas cepacia and Candida antarctica-B were used for biodiesel preparation. Novozyme-435 (C. antarctica lipase-B immobilized on acrylic resin) and CLEA (cross-linked enzyme aggregate) of C. antarctica lipase-B were compared for their biodiesel production potential. Under optimized reaction conditions, Novozyme-435 gave 96% biodiesel yield in 12 h; whereas, CLEA of C. antarctica-B gave 84% yield of biodiesel. Novozyme-435 was reused for six cycles and 72% biodiesel was formed at the end of 6th cycle. The deactivated Novozyme-435 was regenerated by incubating it in soybean oil, 2-butanol and tert-butanol.

Keywords

Manilkara zapota seed oil Lipase Transesterification Biodiesel Sustainability 

References

  1. 1.
    Baskar, G., Aiswarya, R.: Trends in catalytic production of biodiesel from various feedstocks. Renew. Sust. Energy. Rev. 57, 496–504 (2016)CrossRefGoogle Scholar
  2. 2.
    Patil, P. D., Deng, S.: Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel. 88(7), 1302–1306 (2009)CrossRefGoogle Scholar
  3. 3.
    IEA (International Energy Agency) Biofuels for transport: an international perspective. 2004. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.7017&rep=rep1&type=pdf. Accessed 06 June 2016.
  4. 4.
    Karmee, S. K., Chandna, D., Ravi, R., Chadha, A.: Kinetics of base catalysed transesterification of triglycerides from Pongamia oil. J. Am. Oil Chem. Soc. 83, 873–877 (2006)CrossRefGoogle Scholar
  5. 5.
    Karmee, S. K., Chadha, A.: Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour. Technol. 96, 1425–1429 (2005)CrossRefGoogle Scholar
  6. 6.
    Karmee, S. K., Mahesh, P., Ravi, R., Chadha, A.: Kinetics of transesterification of monoglycerides from Pongamia oil. J. Am. Oil Chem. Soc. 81, 425–430 (2004)CrossRefGoogle Scholar
  7. 7.
    Karmee, S. K.: Lipase catalyzed synthesis of fatty acid methyl esters from crude Pongamia oil. Energy Source Part A. 37, 536–542 (2015)CrossRefGoogle Scholar
  8. 8.
    Karmee, S. K., Patria, R. D., Lin, C. S. K.: Techno-economic evaluation of biodiesel production from waste cooking oil—a case study of Hong Kong. Int. J. Mol. Sci. 16(3), 4362–4371 (2015). doi: 10.3390/ijms16034362 CrossRefGoogle Scholar
  9. 9.
    Karmee, S. K., Lin, C. S. K.: Valorisation of food waste for biofuel production: current trends and technological challenges. Sustain. Chem. Process. 2, 22 (2014). doi: 10.1186/s40508-014-0022-1 CrossRefGoogle Scholar
  10. 10.
    Karmee, S. K., Lin, C. S. K.: Lipids from food waste as feedstock for biodiesel production: Case Hong Kong. Lipid Technol. 26 (9), 206–209 (2014)CrossRefGoogle Scholar
  11. 11.
    van Royen, Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Simons, A.: Agroforestree database: a tree reference and selection guide version 4.0 (http://www.worldagroforestry.org/af/treedb/) (2009)
  12. 12.
  13. 13.
    Kaneria, M., Chanda, S.: Evaluation of antioxidant and antimicrobial properties of Manilkara zapota L. (chiku) leaves by sequential soxhlet extraction method. Asian Pac. J. Trop. Biomed. 2(3), S1526–S1533 (2012)CrossRefGoogle Scholar
  14. 14.
    Ma, J., Luo, X.-D., Protiva, P., Yang, H., Ma, C., Basile, M. J., Weinstein, I. B., Kennelly, E. J.: Bioactive novel polyphenols from the Fruit of Manilkara zapota (Sapodilla). J. Nat. Prod. 66, 983–986 (2003)CrossRefGoogle Scholar
  15. 15.
    Shui, G., Wong, S. P., Leong, L. P.: Characterization of antioxidants and change of antioxidant levels during storage of Manilkara zapota L. J. Agric. Food Chem. 52, 7834–7841 (2004)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Liu, T., Song, L., Huang, D.: Profiles and α-amylase inhibition activity of proanthocyanidins in unripe Manilkara zapota (Chiku). J. Agric. Food Chem. 60, 3098–3104 (2012)CrossRefGoogle Scholar
  17. 17.
    Isabelle, M., Lee, B. L., Lim, M. T., Koh, W.-P., Huang, D., Ong, C. N.: Antioxidant activity and profiles of common fruits in Singapore. Food Chem. 123, 77–84 (2010)CrossRefGoogle Scholar
  18. 18.
    Kumar, R. S., Sureshkumar, K.: Manilkara zapota (L.) seed oil: a new third generation biodiesel resource. Waste Biomass. Valoriz. doi:  10.1007/s12649-016-9491-7
  19. 19.
    Kumar, R. S., Sureshkumar, K., Velraj, R.: Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel. 140, 90–96 (2015)CrossRefGoogle Scholar
  20. 20.
    Karmee, S. K., Casiraghi, L. ,Greiner, L.: Technical aspects of biocatalysis in non-CO2 based supercritical fluids. Biotechnol. J. 3, 104–111 (2008)CrossRefGoogle Scholar
  21. 21.
    Karmee, S. K., Niemeijer, B., Casiraghi, L., Mlambo, B., Lapkin, A., Greiner, L.: Facile bio-catalytic synthesis of a macrocyclic lactone in sub- and supercritical solvents. Biocatal. Biotransformation 32(2), 125–131 (2014)CrossRefGoogle Scholar
  22. 22.
    Karmee, S. K.: A chemo-enzymatic reaction sequence for the synthesis of dihydroxyacetone phosphate stock material. Synth. Commun. 43, 450–455 (2013)CrossRefGoogle Scholar
  23. 23.
    Karmee, S. K., van Oosten, R., Hanefeld, U.: Kinetic resolution of 3-hydroxycyclohexanone using different lipases. Tetrahedron: Asymmetry. 22, 1736–1739 (2011)CrossRefGoogle Scholar
  24. 24.
    Karmee, S. K.: Biocatalytic synthesis of ascorbyl esters and their biotechnological applications. Appl. Microbiol. Biotechnol. 81(6), 1013–1022(2009)Google Scholar
  25. 25.
    Karmee, S. K.: Lipase catalyzed synthesis of surfactants from biomass derivatives. Biofuels Bioprod. Biorefining 2(2), 144–154 (2008)CrossRefGoogle Scholar
  26. 26.
    Karmee, S. K., Linardi, D., Lee, J., Lin, C. S. K.: Conversion of lipid from food waste to biodiesel. Waste Manag. 41, 169–173 (2015)CrossRefGoogle Scholar
  27. 27.
    Karmee, S. K.: Liquid biofuels from food waste: current trends, prospect and limitation. Renew. Sustain. Energy Rev. 53, 945–953 (2016)CrossRefGoogle Scholar
  28. 28.
    Kwon, E. E., Kim, S., Jeon, Y. J., Yi, H.: Biodiesel production from sewage sludge: new paradigm for mining energy from municipal hazardous material. Environ. Sci. Technol. 46(18), 10222–10228 (2012)Google Scholar
  29. 29.
    Mondala, A., Liang, K., Toghiani, H., Hernandez, R., French, T.: Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100(3), 1203–1210 (2009)CrossRefGoogle Scholar
  30. 30.
    MSW as a feedstock for biofuels production. http://biofuelstp.eu/msw.html
  31. 31.
    Zaks, A., Klibanov, A. M.: Enzyme-catalyzed processes in organic solvents. Proc. Natl Acad. Sci. U.S.A. 82(10), 3192–3196 (1985)CrossRefGoogle Scholar
  32. 32.
    Han, J. Y., Kim, H. K.: Transesterification using the cross-linked enzyme aggregate of Photobacterium lipolyticum lipase M37. J. Microbiol. Biotechnol. 21(11), 1159–1165 (2011)CrossRefGoogle Scholar
  33. 33.
    Cruz-Izquierdo, A., Pico, E. A., Lopez, C., Serra, J. L., Llama, M. J.: Magnetic cross-linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. PLOS ONE 1–22 (2014) DOI: 10.1371/journal.pone.0115202.
  34. 34.
    Chen, J.-W., Wu, W.-T.: Regeneration of immobilized Candida antarctica lipase for transesterification. J. Biosci. Bioeng. 95(5), 466–469 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Chemical and Minerals EngineeringNorth-West University, Potchefstroom CampusPotchefstroomSouth Africa

Personalised recommendations