Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 5, pp 835–844 | Cite as

Protein Enrichment of Sweet Potato Beverage Residues Mixed with Peanut Shells by Aspergillus oryzae and Bacillus subtilis Using Central Composite Design

  • Sa-Sa Zuo
  • Dong-Ze Niu
  • Ting-Ting Ning
  • Ming-Li Zheng
  • Di Jiang
  • Chun-Cheng Xu
Original Paper

Abstract

Purpose

The present study aimed at reducing the pollution of the waste generated by the sweet potato beverage industry to the environment and transforming the residues mixed with peanut shells into biomass protein to be used as animal feed.

Method

Six different microbial strains were evaluated for their ability to produce true protein using the mixed substrates as a nature medium under solid-state fermentation.

Results

The experimental results revealed that the highest true protein content was obtained when the substrates were fermented with a combination of Aspergillus oryzae and Bacillus subtilis. The optimal process parameters for protein enrichment by solid-state fermentation using A. oryzae and B. subtilis through Central Composition Design (CCD) included initial moisture content of 63.7%, incubation of temperature 26.9 °C and fermentation time of 67.5 h. Expression profile of protein system was characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The fermentation products appeared as five major protein bands, indicating that the protein components had increased after solid-state fermentation by A. oryzae and B. subtilis.

Conclusion

This study developed an efficient and reliable fermentation method to utilize the industrial wastes of sweet potato beverage residues and peanut shells for the animal protein feed.

Keywords

Sweet potato beverage residues Peanut shells Central composite design Aspergillus oryzae and Bacillus subtilis SDS-PAGE Protein enrichment In vitro digestibility 

Notes

Acknowledgements

This study was financially supported by the international cooperation project “Utilization and preservation of agricultural by-products and crop residues for ruminant feeding in Israel and China” (2015DFG32360).

References

  1. 1.
    Sheikh, M., Aslam, N., Ahmed, S., Latif, F., Rajoka, M., Jamil, A.: Isolation and cloning of xylanase and beta-glucosidase genes from Trichoderma harzianum. Mol. Cell. Proteomics. 2, 866 (2003)Google Scholar
  2. 2.
    Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I.M., Koutinas, A.A.: Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 145, 710–716 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhang, W.J., Xu, Z.R., Zhao, S.H., Sun, J.Y., Yang, X.: Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal. Anim. Feed Sci. Technol. 135, 176–186 (2007)CrossRefGoogle Scholar
  4. 4.
    Vendruscolo, F., da Silva Ribeiro, C., Esposito, E., Ninow, J.L.: Protein enrichment of apple pomace and use in feed for Nile tilapia. Appl. Biochem. Biotechnol. 152, 74–87 (2009)CrossRefGoogle Scholar
  5. 5.
    Aggelopoulos, T., Bekatorou, A., Pandey, A., Kanellaki, M., Koutinas, A.A.: Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl. Biochem. Biotechnol. 170, 1885–1895 (2013)CrossRefGoogle Scholar
  6. 6.
    Lei, H., Wang, H.L., Ning, T.T., Hao, W., Xu, C.C.: Protein enrichment of potato starch residue by solid state fermentation with mixed strains. J. Anim Vet. Adv. 11, 2700–2705 (2012)CrossRefGoogle Scholar
  7. 7.
    Yao, W., Nokes S.E.: The use of co-culturing in solid substrate cultivation and possible solutions to scientific challenges. Biofuels. Bioprod. Bioref. 7, 361–372 (2013)CrossRefGoogle Scholar
  8. 8.
    Kolasa, M., Ahring, B.K., Lübeck, P.S., Lübeck, M.: Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 169, 143–148 (2014)CrossRefGoogle Scholar
  9. 9.
    Brijwani, K., Oberoi, H.S., Vadlani, P.V.: Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45, 120–128 (2010)CrossRefGoogle Scholar
  10. 10.
    Yadav, J., Bezawada, J., Ajila, C., Yan, S., Tyagi, R., Surampalli, R.: Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour. Technol. 164, 119–127 (2014)CrossRefGoogle Scholar
  11. 11.
    Darwish, G.A., Bakr, A., Abdallah, M.: Nutritional value upgrading of maize stalk by using Pleurotus ostreatus and Saccharomyces cerevisiae in solid state fermentation. Ann. Agric Sci. 57, 47–51 (2012)Google Scholar
  12. 12.
    Rajoka, M.I., Ahmed, S., Hashmi, A.S., Athar, M.: Production of microbial biomass protein from mixed substrates by sequential culture fermentation of Candida utilis and Brevibacterium lactofermentum. Ann. Microbiol. 62, 1173–1179 (2011)CrossRefGoogle Scholar
  13. 13.
    FAO: Production for sweet potato. http://faostat3.fao.org/home/E (2015)
  14. 14.
    Anike, F., Yusuf M., Isikhuemhen O.: Co-Substrating of Peanut Shells with Cornstalks Enhances Biodegradation by Pleurotus ostreatus. J. Bioremed. Biodeg. 7, 2 (2016)Google Scholar
  15. 15.
    El Sheikha, A.F., Ray, R.C.: Potential impacts of bio-processing of sweet potato: review[J]. Crit. Rev. Food Sci. Nutr. 57, 455–471 (2015)CrossRefGoogle Scholar
  16. 16.
    Iconomou D., Kandylis K., Israilides C., Nikokyris, P. Protein enhancement of sugar beet pulp by fermentation and estimation of protein degradability in the rumen of sheep[J]. Small Ruminant Res. 1, 55–61 (1998)CrossRefGoogle Scholar
  17. 17.
    Aslan, N.: Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol. 185, 80–86 (2008)CrossRefGoogle Scholar
  18. 18.
    Kumar, M., Sharma M.: Optimization of transesterification of chlorella protothecoides oil to biodiesel using box-behnken design method. Waste Biomass Valorization 7, 1–10 (2016)CrossRefGoogle Scholar
  19. 19.
    Li, P.J., Xia, J.L., Shan, Y., Nie, Z.Y., Su, D.L., Gao, Q.R., Zhang, C., Ma, Y.L.: Optimizing production of pectinase from orange peel by Penicillium oxalicum PJ02 using response surface methodology. Waste Biomass Valorization 6, 13–22 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, F., Li, F., Zhao, T., Mao, G., Zou, Y., Zheng, D., Takase, M., Feng, W., Wu, X., Yang, L.: Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement. Appl. Microbiol. Biotechnol. 97, 6725–6737 (2013)CrossRefGoogle Scholar
  21. 21.
    Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., Mehranian, M.: Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. J. Hazard. Mater. 123, 187–195 (2005)CrossRefGoogle Scholar
  22. 22.
    Mandels, M., Andreotti, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Bioeng. 6, 21–33 (1976)Google Scholar
  23. 23.
    Hu, H.L., van den Brink, J., Gruben, B.S., Wösten H.A.B., Gu, J.D., de Vries, R.P.: Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int. Biodeter. Biodegr. 65, 248–252 (2011)CrossRefGoogle Scholar
  24. 24.
    Masoud, W., Kaltoft, C.H.: The effects of yeasts involved in the fermentation of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Int. J. Food Microbiol. 106, 229–234 (2006)CrossRefGoogle Scholar
  25. 25.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)CrossRefGoogle Scholar
  26. 26.
    Tilley, J.M.A., Terry, R.A.: A two stage technique for the in vitro digestion of forage crops. J. Br Grassl. Soc. 18, 104–111 (1963)CrossRefGoogle Scholar
  27. 27.
    Li, D., Zhang, Y., Cui, Z., He, L., Chen, W., Meng, Q., Ren, L.: Effects of phytoecdysteroids (PEDS) extracted from cyanotis arachnoidea on rumen fermentation, enzyme activity and microbial efficiency in a continuous-culture system [J]. PloS One 4(11), e0153584 (2016)CrossRefGoogle Scholar
  28. 28.
    Licitra, G., Hernandez, T., Van Soest, P.: Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57, 347–358 (1996)CrossRefGoogle Scholar
  29. 29.
    Arthur Thomas, T.: An automated procedure for the determination of soluble carbohydrates in herbage [J]. J. Sci. Food Agri. 7, 639–642 (1977)CrossRefGoogle Scholar
  30. 30.
    Thiex, N.J, Anderson S, Gildemeister B. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/soxtec/submersion method): collaborative study[J]. J. AOAC. Int. 86, 899–908 (2003)Google Scholar
  31. 31.
    Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)CrossRefGoogle Scholar
  32. 32.
    Van Soest, P.J.: Collaborative study of acid-detergent fiber and lignin. J. Assoc. Off. Anal. Chem. 56, 781–784 (1973)Google Scholar
  33. 33.
    Almeida, M.I., Almeida N.G., Carvalho K.L., Goncalves, G.A.A., Silva, C.N., Santos, E.A., Vargas, E.A.: Co-occurrence of aflatoxins B1, B2, G1 and G2, ochratoxin A, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil[J]. Food Addit. Contam. Part A 29, 694–703 (2012)CrossRefGoogle Scholar
  34. 34.
    Iconomou, D., Israilides C., Kandylis K., Nikokyris P.: Protein enrichment of sugar beet pulp by solid state fermentation and its efficacy in animal feeding. Proceeding of the IInd International Symposium of Solid State Fermentation. Montpellier, France, Chap. 23, 289–298 (1995)Google Scholar
  35. 35.
    Chen, L., Madl, R.L., Vadlani, P.V.: Nutritional enhancement of soy meal via Aspergillus oryzae solid-state fermentation. Cereal. Chemistry. 90, 529–534 (2013)Google Scholar
  36. 36.
    Xiao, L., Yang, L., Zhang, Y., Gu, Y., Jiang, L., Qin, B.: Solid state fermentation of aquatic macrophytes for crude protein extraction. Ecol. Eng. 35, 1668–1676 (2009)CrossRefGoogle Scholar
  37. 37.
    Bhalla, T., Joshi M.: Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts. World. J. Microbiol. Biotechnol. 10, 116–117 (1994)CrossRefGoogle Scholar
  38. 38.
    Gottschalk, L.M.F., Oliveira, R.A., da Silva Bon, E.P.: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem. Eng. J. 51, 72–78 (2010)CrossRefGoogle Scholar
  39. 39.
    Gu, B., Ma, H.L., Liu, B.: Preparation of bio-feedstuff with rich peptides from rapeseed meal by mixed solid fermentation. J. Chin. Cereals Oils Assoc. 1, 020 (2011)Google Scholar
  40. 40.
    Chen, Y., Zhao L., Liu B., Zuo S.: Application of response surface methodology to optimize microwave-assisted extraction of polysaccharide from Tremella. Physics Procedia. 24, 429–433 (2012)CrossRefGoogle Scholar
  41. 41.
    Israilides, C., Iconomou, D., Kandylis, K., Nikokyris, P.: Fermentability of sugar beet pulp and acceptability in mice. Bioresour. Technol. 47, 97–101 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sa-Sa Zuo
    • 1
  • Dong-Ze Niu
    • 1
  • Ting-Ting Ning
    • 1
  • Ming-Li Zheng
    • 1
  • Di Jiang
    • 1
  • Chun-Cheng Xu
    • 1
  1. 1.College of EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations