Waste and Biomass Valorization

, Volume 9, Issue 5, pp 701–713 | Cite as

Technical Options for Valorisation of Jatropha Press-Cake: A Review

Review

Abstract

Processing of Jatropha seeds to produce oil leaves press-cake (JPC) as a by-product. Based on extraction efficiency, 80–85% of seed remains as press-cake. In places where large quantities of Jatropha oil are extracted, mainly for biodiesel production, huge quantities of press-cake would be produced. JPC constitutes a substantial by-product that has multiple applications. Most papers in literature have focused on a narrow range of product streams arising from valorisation of JPC. This paper presents data on nine possible product streams of JPC valorisation. These are organic fertiliser, protein, animal feed, biocomposites, briquettes, bioethanol, biogas, pyloritic products and syngas. This makes it easier for comparative purposes as it aggregates existing data. The objective of this paper is to review empirical data available in literature on the conversion of JPC into high-value products and map the various valorisation options. The product streams can be placed into three main groups; fertiliser, energy carriers and industrial chemical products. The energy carrier group dominates with five products (briquettes, bioethanol, biogas, pyrolytic products and syngas). Conversion technologies for these products are well established. Biogas and briquettes are the most promising and have wide application. Use of JPC as fertiliser is also widely practiced. Work on production of various industrial chemicals, such as protein and biocomposites is at different stages of maturity. The paper shows a lot of work that has and is still being conducted in order to broaden the product streams of JPC valorisation.

Graphical Abstract

Keywords

Chemical composition Jatropha press-cake Multiple products Valorisation 

References

  1. 1.
    Kumar, S., Gupta, A.K., Naik, S.N.: Conversion of non-edible oil into biodiesel. J. Sci. Ind. Res. 62, 124–132 (2003)Google Scholar
  2. 2.
    Singh, R.N., Vyas, D.K., Srivastava, N.S.L., Madhuri, N.: SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew. Energy. 33, 1868–1873 (2008)CrossRefGoogle Scholar
  3. 3.
    Abreu, F.: Alternative by-products from Jatropha. http://www.ifad.org/events/jatropha/harvest/f_Abreu.ppt (2009)
  4. 4.
    Bhattacharjee, S., Haldar, S., Reddy, A., Ghose, N., Gautam, S., Bhattacharjee, A., Jain, V.: By-products of biodiesel manufacture, Warnock International, India. (2012)Google Scholar
  5. 5.
    Achten, W.M.J., Verchot, L., Franken, Y.J., Mathijs, E., Singh, V.P., Aerts, R., Muys, B.: Jatropha bio-diesel production and use. Biomass Bioenerg. 32, 1063–1084 (2008)CrossRefGoogle Scholar
  6. 6.
    Jongschaap, R., Corré, W., Bindraban, P., Brandenburg, W.: Claims and facts on Jatropha curcas L. Plant Research International B.V. Wageningen, Netherlands (2007)Google Scholar
  7. 7.
    Del Greco, G.V., Rademaker, L.: The Jatropha energy system: an integrated approach to decentralised and sustainable energy production at the village level. Workshop on the potential of Jatropha curcas in rural development and environment protection, May 13–15, Harare (1998)Google Scholar
  8. 8.
    Openshaw, K.: A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg. 19(1), 1–15 (2000)CrossRefGoogle Scholar
  9. 9.
    Grimsby, L.K., Aune, J.B., Johnsen, F.H.: Human energy requirements in Jatropha oil production for rural electrification in Tanzania. Energy Sust. Dev. 16, 297–302 (2012)CrossRefGoogle Scholar
  10. 10.
    Adinurani, P.G., Nindita, A., & Hendroko, R.: Challenges of biofuel industry in Indonesia. In: Workshop on Renewable Energy and Sustainable Development in Indonesia; Past Experience–Future Challenges, Jakarta, Indonesia (2009)Google Scholar
  11. 11.
    Lestari, D., Mulder, W., Sanders, J.: Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem. Eng. J. 50, 16–23 (2010)CrossRefGoogle Scholar
  12. 12.
    Kootstra, A.M.J., Beeftink, H.H., Sanders, J.P.M.: Valorisation of Jatropha curcas: solubilisation of proteins and sugars from the NaOH extracted de-oiled press cake. Ind. Crop. Prod. 34, 972–978 (2011)CrossRefGoogle Scholar
  13. 13.
    Martı´n, C., Moure, A., Martı´n, G., Carrillo, E., Domı´nguez, H., Parajo, J.C.: Fractional characterisation of Jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenerg. 33, 533–538 (2010)CrossRefGoogle Scholar
  14. 14.
    Prasad, R.B.N.: Value added by-products from oilseed cakes. Indian Instituteof Chemical Technology. http://www.competebioafrica.net/events/events2/seminar_india/ppt/4-1-Prasad.pdf (2008)
  15. 15.
    Grimsby, L.K., Fjørtoft, K., Bernt, A.J.: Nitrogen mineralization and energy from anaerobic digestion of Jatropha press cake. Energy Sust. Dev. 17, 35–39 (2013)CrossRefGoogle Scholar
  16. 16.
    Staubmann, R., Foidl, N., Gubitz, G.M., Lafferty, R.M., Arbizu, V.M.V., Steiner, W.: Biogas production from Jatropha curcas press-cake. Appl. Biochem. Biotechnol. 63–65, 457–467 (1997)CrossRefGoogle Scholar
  17. 17.
    Ali, N., Kurchania, A.K., Babel, S.: Bio-methanisation of Jatropha curcas defatted waste. J. Eng. Technol. Res. 2(3), 038–043 (2010)Google Scholar
  18. 18.
    Raheman, H., Mondal, S.: Biogas production potential of Jatropha seed cake. Biomass Bioenerg. 37, 25–30 (2012)CrossRefGoogle Scholar
  19. 19.
    Chandra, R., Vijay, V.K., Subbarao, P.M.V.: A study on biogas generation from non-edible oil seed cakes: Potential and prospects in India. The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006)”, 21–23 November. Bangkok, Thailand (2006)Google Scholar
  20. 20.
    van Eijck, J.: Transition towards Jatropha biofuels in Tanzania? An analysis with strategic niche management. African Studies Centre, vol 3, Leiden, The Netherlands. http://www.ascleiden.nl/Pdf/asc3vanEijck.pdf (2006)
  21. 21.
    Makkar, H.P.S., Becker, K., Sporer, F., Wink, M.: Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agric. Food Chem. 45, 3152–3157 (1997)CrossRefGoogle Scholar
  22. 22.
    Gubitz, G.M., Mittelbech, M., Trabi, M.: Exploitation of tropical oil seed plant Jatropha curcas L. Bioresour. Technol. 67, 73–82 (1999)CrossRefGoogle Scholar
  23. 23.
    Kasuya, M.C.M., da Luz, J.M.R., Pereira, L.P.S., da Silva, J.S., Montavani, H.C., Rodrigues, M.T.: Bio-toxification of Jatropha seed cake and its use in animal feed. In: Fang, Z. (ed.) Biodiesel. Feedstocks, production and applications, pp 487. Intech, Croatia (2012)Google Scholar
  24. 24.
    Nithiyanantham, S., Siddhuraju, P., Francis, G.: Potential of Jatropha curcas as a biofuel, animal feed and health products. J. Am. Oil Chem. Soc. 89, 961–972 (2012)CrossRefGoogle Scholar
  25. 25.
    Saetae, D., Suntornsuk, W.: Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake. Int. J. Mol. Sci. 12(1), 66–77 (2011)Google Scholar
  26. 26.
    Martínez-Herrera, J., Siddhuraju, P., Francis, G., Dávila-Ortíz, G., Becker, K.: Chemical composition, toxic/antimetabolic constituents and effects of different treatments on their levels in four provenances of Jatropha curcas L. from Mexico. Food Chem. 96, 80–89 (2006)CrossRefGoogle Scholar
  27. 27.
    Ahmed, W.A., Salimon, J.: Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur. J. Sci. Res. 31(3), 429–436 (2009)Google Scholar
  28. 28.
    Bueso, F., Sosa, I., Chun, R., Pineda, R.: Phorbol esters seed content and distribution in Latin American provenances of Jatropha curcas L.: potential for biopesticide, food and feed. Springerplus. 5, 1–7 (2016)CrossRefGoogle Scholar
  29. 29.
    Teran, M.F.C.: Techno-economic evaluation for producing suitable animal feed protein from Jatropha curcas press cake. MSc Thesis. Wageningen University, Netherlands (2013)Google Scholar
  30. 30.
    Belewu, M.A., Sam, R.: Solid state fermentation of Jatropha curcas kernel cake: Proximate composition and antinutritional components. J. Yeast Fungal Res. 1(3), 44–46 (2010)Google Scholar
  31. 31.
    Phengnuam, T., Suntornsuk, W.: Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. J. Biosci. Bioeng. 115 (2), 168–172 (2013)CrossRefGoogle Scholar
  32. 32.
    da Luz, J.M.R., Nunes, M.D., Paes, S.A., Torres, D.P., Kasuya, M.C.M.: Bio-detoxification of Jatropha curcas seed cake by Pleurotus ostreatus. Afr. J. Microbiol. Res. 8(11), 1148–1156 (2014)CrossRefGoogle Scholar
  33. 33.
    Navarro-Pineda, F.S., Baz-Rodriguez, S.A., Handler, R., Sacramento-Rivero, J.C.: Advances on the processing of Jatropha towards a whole-crop biorefinery. Renew. Sust. Energ. Rev. 54, 247–269 (2016)CrossRefGoogle Scholar
  34. 34.
    Chaturvedi, S., Kumar, A.: Bio-diesel waste as tailored organic fertilizer for improving yields and nutritive values of Lycopercicum esculatum (tomato) crop. J. Soil Sci. Plant Nutr. 12(4), 801–810 (2012)MathSciNetGoogle Scholar
  35. 35.
    FACT Foundation.: The Jatropha handbook: From cultivation to application. Fact Foundation, The Netherlands (2010)Google Scholar
  36. 36.
    Mkoma, S.L., Mabiki, F.P.: Theoreticak and practical evaluation of jatropha as an energy source biofuel in Tanzania. In: Bernardes, Dr. M.A.D. (Ed.) Economic Effects of Biofuel Production, pp. 181–200. InTech, Croatia (2011)Google Scholar
  37. 37.
    Kumar, A., Sharma, S.: An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crop. Prod. 8, 1–10 (2008)Google Scholar
  38. 38.
    Chandra, R., Vijay, V.K., Subbarao, P.M.V.: Biogas production from de-oiled seed cakes of Jatropha and Pongamia. Renew. Energy. 3(2), 17–22 (2009)Google Scholar
  39. 39.
    Food and Agricultural Organisation (FAO): Fertiliser use by crop in Ghana. Food and Agricultural Organisation of the United Nations, Rome, Italy (2005)Google Scholar
  40. 40.
    Sardar, S., Ilyas, S.U., Malik, S.R., Javaid, K.: Compost fertilizer production from sugar press mud (SPM). Int. J. Chem. Environ. Eng. 3(1), 39–43 (2012)Google Scholar
  41. 41.
    Chaturvedi, S., Satya, S., Tiwari, S.K.: Treatment of biowaste (generated in biodiesel process)—A new strategy for green environment and horticulture crop. Int. J. Civil Environ. Eng. 1(3), 164–167 (2009)Google Scholar
  42. 42.
    Ghosh, A., Chikara, J., Chaudhary, D.R.: Value addition of jatropha cake and its utilisation as manure in jatropha and other crops. In: Carels, N., Sujatha, M., Bahadar, B. (eds.) Jatropha, Challenges for a New Energy Crop: Volume 1: Farming, Economics and Biofuel, pp. 355–368. Springer Science + Business Media, New York (2012)CrossRefGoogle Scholar
  43. 43.
    Jingura, R.M., Kamusoko, R.: Evaluation of life cycle assessment of Jatropha biodiesel. Energy Sour. Part B. 11(5), 396–403 (2016)CrossRefGoogle Scholar
  44. 44.
    Thuku, L.N.: Development of fuel briquettes for knockdown of mosquitoes using natural products. MSc Thesis. Jomo Kenyatta University of Agriculture and Technology, Kenya (2013)Google Scholar
  45. 45.
    Pandey, V.C., Singh, K., Singh, J.S., Kumar, A., Singh, B., Singh, R.P.: Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sust. Energ. Rev. 16, 2870–2883 (2012)CrossRefGoogle Scholar
  46. 46.
    Pambudi, N.A., Torii, S., Saptoadi, H., Sumbodo, W., Syamsiro, M., Surono, U.B.: Experimental study on combustion of biobriquettes Jatropha curcas solid waste. J. Environ. Eng. Manag. 20(2), 133–136 (2010)Google Scholar
  47. 47.
    Beerens, P., Ansø, N., Galema, T., Adriaans, T., van Eijck, J.: Applications of Jatropha products. In: FACT, Jatropha Handbook – From cultivation to application. FACT Foundation, Eindhoven, The Netherlands (2010)Google Scholar
  48. 48.
    van Eijck, J.: Applications of other Jatropha products. In: The Jatropha Handbook- from cultivation to application, FACT Foundation, The Netherlands (2010)Google Scholar
  49. 49.
    Boston, N., Kristen, M.: SCD III—Practicum Report, Engineering for developing communities program. University of Colorado, USA (2011)Google Scholar
  50. 50.
    Nielsen, F., Raghavan, K., De Jongh, J.: Perspectives of jatropha production and processing by small- scale producers. Hivos Jatropha Expert meeting. http://www.hivos.net/Hivos-Knowledge-Programme/Themes/Small-Producer
  51. 51.
    Mishra, M.S., Chandrashekhar, B., Chatterjee, T., Singh, K.: Production of bio-ethanol from Jatropha oilseed cakes via dilute acid hydrolysis and fermentation by Saccharomyces cerevisiae. Int. J. Biotechnol. Appl. 3(1), 44–47 (2011)Google Scholar
  52. 52.
    Shuhairia, N. M., Zaharib, M.S.M., Ismail, S.: Lignocellulosic-based Jatropha seed pre-treatment using ultrasonic reactive extraction for liquid biofuel production. Chem. Eng. Trans. 45, 1573–1578 (2015)Google Scholar
  53. 53.
    Yang, B., Wyman, C.E.: Pre-treatment: the key to unlocking low-cost cellulosic ethanol. Biofuel. Bioprod. Bior. 2, 26–40 (2008)CrossRefGoogle Scholar
  54. 54.
    Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., Monot, F.: New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 20, 372–380 (2009)CrossRefGoogle Scholar
  55. 55.
    Dos Dantos, S.R., De Macedo, A.L., Pantoja, L.G., Dos Santos, A.S.: Bioethanol from Jatropha seed cakes produced by acid hydrolysis followed by fermentation with baker’s yeast. Int. J. Appl. Sci. Technol. 4(4), 111–117 (2014)Google Scholar
  56. 56.
    Mohanty, B., Abdullahi, I.I.: Bioethanol production from lignocellulosic waste- a review. Biosci. Biotech. Res. Asia. 13(2), 1153–1161 (2016)CrossRefGoogle Scholar
  57. 57.
    Jain, R.K., Ghosh, D., Agrawal, D., Suman, S.K., Pandey, D., Vadde, V.T., Dixit, A.K., Adhikari, D.K., Dasgupta, D.: Ethanol production from rice straw using thermotolerant Kluyveromyces sp. IIPE453. Biomass Conv. Bioref. 5(4), 331–337 (2015)CrossRefGoogle Scholar
  58. 58.
    Wi, S.G., Choi, I.S., Kim, K.H., Kim, H.M., Bae, H.: Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels. 6, 166 (2013)CrossRefGoogle Scholar
  59. 59.
    Demissie, A. G., Lele, S.S.: Simultaneous Saccharification and Fermentation of Jatropha curcas (Linn.) Seed Cake for Production of Bioethanol. Int. J. Environ. Bioenerg. 6(3), 177–186 (2013)Google Scholar
  60. 60.
    Ali, I.W., Rasul, B.R., Aziz, K.K., Shamsiah, A.B.D.S., Zainudin, A.: Production of biocellulosic ethanol from wheat straw. Acta Polytech. 52(3), 28–34 (2012)Google Scholar
  61. 61.
    Bhatt, S.M., Shilpa.: Bioethanol production from economical agro waste (groundnut shell) in SSF mode. Res. J. Pharm. Biol. Chem. Sci. 5(6), 1210–1218 (2014)Google Scholar
  62. 62.
    Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M., Hackel, S.: Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour. Technol. 58, 77–82 (1996)CrossRefGoogle Scholar
  63. 63.
    Raju, C.S.: Optimization of the anaerobic digestion process by substrate pre-treatment and the application of NIRS. Aarhus University, Denmark. Technical report BCE -TR-1, pp. 96 (2012)Google Scholar
  64. 64.
    Hobbs, P., Ward, A., Pardo, G.: Biogas for agriculture. Iger innovations. https://www.aber.ac.uk/en/media/departmental/ibers/pdf/innovations/07/07ch7.pdf (2007)
  65. 65.
    Carlifonia Intergrated Waste Management Board (CIWMB).: Current anaerobic digestion technologies used for treatment of municipal organic solid waste. University of California, Davis. Contractor’s Report (2008)Google Scholar
  66. 66.
    Sinbuathong, N., Sirirote, P., Sillapacharoenkul, P., Munakata-Marr, J., Chulalaksananukul, S.: Biogas production from two-stage anaerobic digestion of Jatropha curcas seed cake. Energy Sour. Part A. 34(22), 2048–2056 (2012)CrossRefGoogle Scholar
  67. 67.
    Chandra, R., Vijay, V.K., Subbarao, P.M.V., Khura, T.K.: Production of methane from anaerobic digestion of Jatropha and Pongamia oil cakes. Appl. Energy. 93, 148–159 (2012)CrossRefGoogle Scholar
  68. 68.
    Comparetti, A., Febo, P., Greco, C., Orlando, S.: Current state and future of biogas and digestate production. Bulg. J. Agric. Sci. 19(1), 1–14 (2013)Google Scholar
  69. 69.
    Zupancic, D.G., Grilc, V.: Anaerobic treatment and biogas production from organic waste. In: Kumar, S (Ed.) Management of organic waste, pp. 3–28. InTech (2012)Google Scholar
  70. 70.
    Boe, K., Batstone, D. J., Angelidaki, I.: Optimisation of serial CSTR biogas reactors using modeling by ADM1. In: Proceedings of the first international workshop on the IWA Anaerobic Digestion Model No.1 (ADM1), 2–4 September, Lyngby, Denmark, pp. 219–221. London, International Water Association (2005)Google Scholar
  71. 71.
    Jingura, R.M., Musademba, D., Matengaifa, R.: An evaluation of utility of Jatropha curcas L. as a source of multiple energy carriers. Int. J. Eng. Sci. Technol. 2(7), 115–122 (2010)Google Scholar
  72. 72.
    Bothi, K.L.: Characterization of biogas from anaerobically digested dairy waste for energy use. MScThesis. Cornell University, New York (2007)Google Scholar
  73. 73.
    Monnet, F.: An Introduction to the anaerobic digestion of organic waste. (2003) Accessed 4 May 2015Google Scholar
  74. 74.
    Francis, G., Edinger, R., Becker, K.: A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum. 29, 12–24 (2005)CrossRefGoogle Scholar
  75. 75.
    Visser, J., Adriaans, T.: Anaerobic digestion of Jatropha press cake. FACT Foundation, Eindhoven, The Netherlands (2007)Google Scholar
  76. 76.
    Sinbuathong, N., Munakata-Marr, J., Sillapacharoenkul, B., Chulalaksananikul, S.: Effect of the solid content on biogas production from Jatropha curcas seed cake. Proceedings of the Global Conference on Global Warming, Lisbon, Portugal 11–14 July (2011)Google Scholar
  77. 77.
    Radhakrishna, P.: Contribution of de-oiled cakes in carbon sequestration and as a source of energy. In: Radhakrishna, P. (ed.) Indian agriculture need for a policy initiative, Proceedings of the fourth International Biofuels Conference, pp. 65–70. New Delhi, Winrock International India, India (2007)Google Scholar
  78. 78.
    Thiagajaran, J., Srividhya, P.K., Rajasakeran, E.: A review of the thermo-chemical conversion process of non-edible seedcakes. J. Energy Biosci. 4(2), 7–15 (2013)Google Scholar
  79. 79.
    Gofferje, G., Schmid, M., Stabler, A.: Characterisation of Jatropha curcas L. cast films with respect to relevant packaging properties. Int. J. Polym. Sci. Volume 2015, Article ID 630585, 9 pages (2015)Google Scholar
  80. 80.
    Makkar, H.P.S., Becker, K.: Jatropha curcas toxicity: identification of toxic principle (s). In: Garland, T., Bar, A.C. (eds.) Toxic plants and other natural toxicants, Proceedings 5th International Symposium on Poisonous Plants, San Angelo, Texas, USA, May 19–23, pp. 554–558. CAB International, New York (1997)Google Scholar
  81. 81.
    Makkar, H.P.S., Francis, G., & Becker, K.: Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J. Sci. Food Agric. 88, 1542–1548 (2008)CrossRefGoogle Scholar
  82. 82.
    Zhang, S.F., Liu, X.Y., Zhang, J.Z., Li, J. Z.: A novel formaldehyde-free adhesive from Jatropha curcas press-cake. Adv. Mater. Res. 236, 1549–1553 (2011)Google Scholar
  83. 83.
    Phengnuam, T., Suntornsuk, W.: Recent bio-utilization of Jatropha curcas seed. 4th International Conference on Biotechnology and Environment Management, IPCB EE vol. 75, IACSIT Press, Singapore (2014)Google Scholar
  84. 84.
    Mahanta, N., Gupta, A., Khare, S.K.: Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol. 99, 1729–1735 (2014)Google Scholar
  85. 85.
    Makkar, H.P.S., Kumar, V., Becker, K.: Use of detoxified jatropha kernel meal and protein isolate in diets of farm animals. In: Makkar, H.P.S. (ed.) Biofuel co-products as livestock feed- opportunities and challenges, pp. 352–378. FAO, Rome (2012)Google Scholar
  86. 86.
    Francis, G., Oliver, J., Sujatha, M.: Non-toxic jatropha plants as a potential multipurpose multi-use oilseed crop. Ind. Crops Prod. 42, 397–401(2013)CrossRefGoogle Scholar
  87. 87.
    Pamidimarri, D.V.N.S., Singh, S., Mastan, S.G., Patel, J., Reddy, M. P.: Molecular characterization and identification of markers for toxic and non-toxic varieties ofJatropha curcas L. using RAPD, AFLP and SSR markers. Mol. Biol. Rep. 36(6), 1357–1364 (2009)CrossRefGoogle Scholar
  88. 88.
    Gogoi, R., Niyogi, U.K., Tyagi, A.K.: Methods of detoxification of Jatropha curcas L. seed cake for its use as protein supplement in animal feed—An overview. Indian J. Nat. Prod. Resour. 6(3), 176–182 (2015)Google Scholar
  89. 89.
    Belewu, M.A., Belewu, K.Y., Ogunsola, F.O.: Nutritive value of dietary fungi treated Jatropha curcas kernel cake: voluntary intake, growth and digestibility coefficient of goat. Agric. Biol. J. N. Am. 1(2), 135–138 (2010)Google Scholar
  90. 90.
    Guedes, R.E., Cruz, F.D., de Lima, M.C., Sant’Ana, L.D., Castro, R.N., Mendes, M.F.: Detoxification of Jatropha curcas seed cake using chemical treatment: analysis with a central composite rotatable design. Ind. Crops Prod. 52, 537–543 (2014)CrossRefGoogle Scholar
  91. 91.
    Makkar, H., Becker, K.: Method for detoxifying plant constituents. In: European Patent Office, Patent number: WO 2010/092143 A1 (2010)Google Scholar
  92. 92.
    Sadubthummarak, U., Parkpian, P., Ruchirawat, M., Kongchum, M., Delaune, R.D.: Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product. J. Environ. Sci. Health B. 48(11), 974–982 (2013)CrossRefGoogle Scholar
  93. 93.
    McKendry, P.: Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 83, 47–54 (2002)Google Scholar
  94. 94.
    Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energy Rev. 14, 578–597 (2010)CrossRefGoogle Scholar
  95. 95.
    Monique, K.F., Romeiro, G.A., Raquel, V.S.S., Priscila, A.P., Raimundo, N.D., Luiz, A.D., Franco A.P.: Pyrolysis oil from the fruit and cake of Jatropha curcas produced using a low temperature conversion (ltc) process: Analysis of a pyrolysis oil-diesel blend. Energy Pow. Eng. 3(3), 332–338 (2011)Google Scholar
  96. 96.
    Sohpal, V.K., Sharma, P.K.: Thermochemical conversion: Jatropha curcas in fixed bed reactor using slow pyrolysis. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 7(12), 901–904 (2013)Google Scholar
  97. 97.
    Majhi, A., Sharma, Y.K., Naik, D.V., Chauhan, R.: The production and evaluation of bio-oil obtained from the Jatropha curcas cake. Energy Sour. Part A. 37(16), 1782–1789 (2015)CrossRefGoogle Scholar
  98. 98.
    Antony, R.S., Robert, K.Z., Pillai, B.C.: Flash pyrolysis of Jatropha oil cake in gas heated fluidized bed research reactor. Int. J. Chem. Eng. Res. 2(1), 1–12 (2010)Google Scholar
  99. 99.
    Okeola, O.F., Odebunmi, E.O., Ameen, O.M.: Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas pericarp and seed coat. Bull. Chem. Soc. Ethiop. 26, 171–180 (2012)Google Scholar
  100. 100.
    Sathishkumar, P., Arulkumar, M., Palvannan, P.: Utilisation of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol brilliant blue R (RBBR). J. Clean. Prod. 22, 67–75 (2012)CrossRefGoogle Scholar
  101. 101.
    Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S., Ruangviriyachai, C.: Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterisation of their physico-chemical properties. Chem. Eng. Res. Des. 89, 335–340 (2011)CrossRefGoogle Scholar
  102. 102.
    Tuna, P.: Generation of synthesis gas for fuels and chemicals production. PhD Thesis. Lund University, LundGoogle Scholar
  103. 103.
    Sharma, P., Sheth, P.N.: Thermo-chemical conversion of Jatropha deoiled cake: pyrolysis vs. gasification. Int. J. Chem. Eng. Appl. 6(5), 376–380 (2015)Google Scholar
  104. 104.
    Pambudi, N.A., Laukkanen, T., Fogelholm, C., Kohl, T., Jarvinen, M.: Prediction of gas composition of Jatropha curcas Linn oil cake in entrained flow reactors using ASPEN PLUS simulation software. Int. J. Sust. Eng. 6(2), 142–150 (2013)Google Scholar
  105. 105.
    Elshaarani, M.T., Yaakob, Z., Dahlan, K.Z.M., Mohammad, M.: Jatropha deoiled cake filler-reinforced medium-density polyethylene biocomposites: effect of filler loading and coupling agent on the mechanical, dynamic mechanical and morphological properties. Polym. Compos. 34(5), 746–756 (2013)CrossRefGoogle Scholar
  106. 106.
    Hidayat, H., Keijsers, E.R.P., Prijantoa, U., van Damb, J.E.G., Heeres, H.J.: Preparation and properties of binderless boards from Jatropha curcas L. seed cake. Ind. Crops Prod. 52, 245–254 (2014)CrossRefGoogle Scholar
  107. 107.
    Lestari, D., Mulder, W.J., Sanders, J. P. M.: Jatropha seed protein functional properties for technical applications. Biochem. Eng. J. 53(3), 297–304 (2011)CrossRefGoogle Scholar
  108. 108.
    Diebel, W., Reddy, M.M., Misra, M., Mohanty, A.: Material property characterisation of co-products from biofuel industries: potential uses in value-added biocomposites. Biomass Bioener. 37, 88–96 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Agricultural Sciences and TechnologyChinhoyi University of TechnologyChinhoyiZimbabwe

Personalised recommendations