Advertisement

Thermodynamic Analysis of Municipal Solid Waste Gasification Under Isothermal and Adiabatic Conditions by a Gibbs Free Energy Minimization Model

  • João F. de Oliveira
  • Marcos L. Corazza
  • Fernando A. P. Voll
Original Paper
  • 98 Downloads

Abstract

An equilibrium model has been developed to predict the composition of a gaseous mixture obtained from the gasification process of the Curitiba City Municipal Solid Waste (MSW). The ultimate analysis of this MSW was also obtained in this study (C = 53.60%, H = 6.74%, N = 1.85%, S = 0.21%, O = 31.03%, Ash = 6.57%), what is necessary when there is lack of experimental information on the elemental composition of the feedstock. Simulations for different gasification scenarios were carried out regarding autothermic and supercritical operations. The developed model was validated with experimental data from literature and was used for optimizing the gasification of MSW according to the amount of air injected in the system, feedstock moisture, temperature and pressure in the gasifier. It was observed that an increase in the pressure of an adiabatic process can increase the lower heat value (LHV) of the gas if the moisture is also increased until an optimum condition. Isothermal processes simulated with supercritical water at high temperatures (higher than that reached in the adiabatic scenarios) resulted in higher LHVs of the gas product.

Keywords

Gasification Municipal solid waste Equilibrium modelling Syngas 

Notes

Acknowledgements

The authors are grateful to CNPq (Procs. Num. 406737/2013-4 and 309033/2016-0), CAPES and Fundação Araucária-Paraná (Brazilian Agencies) for the financial support and scholarship.

References

  1. 1.
    Hoornweg, D., Bhada-Tata, P.: What a Waste: A Global Review of Solid Waste Management. World Bank, Washington, DC (2012)Google Scholar
  2. 2.
    Abrelpe, Panorama dos residuos solidos no Brasil.: Associação Brasileira de Empresas de Limpesa Pública e Resíduos Especiais. http://www.abrelpe.org.br/Panorama/panorama2013.pdf (2013). Accessed 10 May 2016
  3. 3.
    International Energy Agency: World Energy Outlook 2015 Factsheet Global Energy Trends to 2040. https://www.iea.org/media/news/2015/press/151110_WEO_Factsheet_GlobalEnergyTrends.pdf (2015). Accessed 10 May 2016
  4. 4.
    Zambon, K.L., Carneiro, A.A., Silva, A.N., Negri, J.C.: Análise de decisão multicritério na localização de usinas termoelétricas utilizando SIG. Pesquisa Operacional. 25, 183–199 (2005)CrossRefGoogle Scholar
  5. 5.
    Barba, D., Prisciandaro, M., Salladini, A., Mazziotti Di Celso, G.: The gibbs free energy gradient method for RDF gasification modelling. Fuel. 90, 1402–1407 (2011)CrossRefGoogle Scholar
  6. 6.
    Instituto Brasileiro de Geografia Estatística. https://cidades.ibge.gov.br/brasil/pr/curitiba/panorama (2016). Accessed 04 Jan 2016
  7. 7.
    Kangas, P., Hannula, I., Koukkari, P., Hupa, M.: Modelling super-equilibrium in biomass gasification with the constrained Gibbs energy method. Fuel. 129, 86–94 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification-an overview. Renew. Sustain. Energy Rev. 13, 594–604 (2009)CrossRefGoogle Scholar
  9. 9.
    Zainal, Z., Ali, R., Lean, C., Seetharamu, K.: Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag. 42, 149–1515 (2001)CrossRefGoogle Scholar
  10. 10.
    Hannula, I., Kurkela, E.: A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass Bioenerg. 38, 58–57 (2012)CrossRefGoogle Scholar
  11. 11.
    Mountouris, A., Voutsas, E., Tassios, D.: Solid waste plasma gasification: equilibrium model development and exergy analysis. Energy Convers. Manag. 47, 1723–1737 (2006)CrossRefGoogle Scholar
  12. 12.
    Jarungthammachote, S., Dutta, A.: Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers. Manag. 49, 1345–1356 (2008)CrossRefGoogle Scholar
  13. 13.
    Cohce, M., Dincer, I., Rosen, M.: Thermodynamic analysis of hydrogen production from biomass gasification. Int. J. Hydrog. Energy 35, 4970–4980 (2009)CrossRefGoogle Scholar
  14. 14.
    Ghassemi, H., Shahsavan-Markadeh, R.: Effects of various operational parameters on biomass gasification process; a modified equilibrium model. Energy Convers. Manag. 79, 18–24 (2013)CrossRefGoogle Scholar
  15. 15.
    Pellegrini, L., Oliveira, S. Jr.: Exergy analysis of sugarcane bagasse gasification. Energy. 32, 314–327 (2007)CrossRefGoogle Scholar
  16. 16.
    Begum, S., Rasul, M.G., Akbar, D., Ramzan, N.: Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies 6, 6508–6524 (2013)CrossRefGoogle Scholar
  17. 17.
    Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14, 2841–2851 (2010)CrossRefGoogle Scholar
  18. 18.
    Antal, J.M., Allen, S.G., Schulman, D., Xu, X.: Biomass gasification in supercritical water. Ind. Eng. Chem. Res. 39, 4040–4053 (2000)CrossRefGoogle Scholar
  19. 19.
    Tang, H., Kitagawa, K.: Supercritical water gasification of biomass: thermodynamic analysis with direct Gibbs free energy minimization. Chem. Eng. J. 106, 261–267 (2004)CrossRefGoogle Scholar
  20. 20.
    Voll, F., Rossi, C., Silva, C., Guirardello, R., Souza, R., Cabral, V., Cardozo-Filho, L.: Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. Int. J. Hydrog. Energy 34, 9737–9744 (2009)CrossRefGoogle Scholar
  21. 21.
    Tavares, R.C.: Composição gravimétrica: uma ferramenta de planejamento e gerenciamento do resíduo urbano de Curitiba e região metropolitana. Masters dissertation. Instituto de Engenharia do Paraná, Instituto de Tecnologia para o Desenvolvimento. Curitiba. http://sistemas.institutoslactec.org.br/mestrado/dissertacoes/arquivos/Romero.pdf (2007)
  22. 22.
    Balcazar, J.G.C.: Modelagem de ciclos combinados integrados à incineração de resíduos sólidos municipais. Masters dissertation. Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá. http://hdl.handle.net/11449/99281 (2011)
  23. 23.
    Carvalhaes, V.: Análise do Potencial Energético de Resíduo Sólido Urbano para Conversão em Processos Termoquímicos de Gaseificação. Masters dissertation. Universidade de Brasília, Brasília. http://repositorio.unb.br/bitstream/10482/16130/1/2013_ViniciusCarvalhaes.pdf(2013)
  24. 24.
    Basu, P.: Biomass Gasification and Pyrolysis Practical Design and Theory. Elsevier, Burlington (2010)Google Scholar
  25. 25.
    Liu, Y., Guo, Q.: Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process. Chin. J. Chem. Eng. 21, 127–134 (2013)CrossRefGoogle Scholar
  26. 26.
    Machado, C.F.I.: Uma Análise do Tratamento Térmico dos Resíduos Sólidos Urbanos de Bauru/SP. Universidade Federal do Rio de Janeiro, Rio de Janeiro. http://monografias.poli.ufrj.br/monografias/monopoli10013010.pdf (2015)
  27. 27.
    Shi, H., Mahinpey, N., Aqsha, A., Silbermann, R.: Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Manag. 48, 34–47 (2016)CrossRefGoogle Scholar
  28. 28.
    Byrd, A.J., Pant, K.K., Gupta, R.B.: Hydrogen production from glucose using Ru/Al2O3 catalyst in supercritical water. Ind. Eng. Chem. Res. 46, 3574–3579 (2007)CrossRefGoogle Scholar
  29. 29.
    Reid, R.C., Prausnitz, J.M., Poling, B.E.: The properties of gases and liquids, 4th edn. McGraw-Hill, New York (1987)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • João F. de Oliveira
    • 1
  • Marcos L. Corazza
    • 1
  • Fernando A. P. Voll
    • 1
  1. 1.Department of Chemical EngineeringFederal University of ParanáCuritibaBrazil

Personalised recommendations