Skip to main content
Log in

Utilization of MSW-Derived Char for Catalytic Reforming of Tars and Light Hydrocarbons in the Primary Syngas Produced During Wood Chips and MSW-RDF Air Gasification

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present work aimed at optimising the design and operation of char utilization as a low cost catalyst for tars reforming. The effect of temperature, tars composition, light hydrocarbons composition, steam content and type of reformer on the conversion of tars and light hydrocarbons into additional syngas using sorted municipal solid waste (MSW)—derived char was systematically monitored. Reforming tests were carried out using industrial primary syngas produced by air gasification of wood chips and MSW-RDF in a commercial fluidized bed gasifier. Up to 85% of tars present in the primary syngas have been converted to permanent gases at 871 °C, while passing through the catalytic fixed bed of char, for 1.4 s, at atmospheric pressure and syngas space velocities in the 3500–4000/h relative to the char in the bed (0.82 NL/g h). Content of multi-ring aromatics decreased following the passage of the syngas through the char bed leaving naphthalene and xylene as the predominant residuals. Propane, propylene and ethylene were completely converted. Up to 30% methane conversion was reached at 925 °C while ethane conversion was only occurring under high steam content of 65 vol%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

0 :

The index 0 indicates an initial value

IS :

Internal Standard

Xi :

Conversion of species i

mi :

Mass flow rate of the species i

[Ei]:

Concentration of the species i

Si :

Surface of a peak in the spectrum of species i

Ki :

Calibration factor of species i with respect to the internal standard

K12 :

Calibration factor of the species 1 with respect to the species 2

X2/1 :

Factor of reduction of  \(\frac{{\left[ {E_{2} } \right]}}{{\left[ {E_{1} } \right]}}\) ratio

K2/1 :

Rate of variation of  \(\frac{{\left[ {E_{2} } \right]}}{{\left[ {E_{1} } \right]}}\) ratio

τ:

Mean residence \(\left( {\frac{V}{\upsilon }} \right)\) time

V:

Volume

E:

Activation energy

a:

Pre-exponential factor

R:

Ideal gas constant

ki :

Reaction constant

[Char]0 :

Char concentration injected into the reformer at reaction conditions

Mi :

Molecular weight of species i

xi :

Mass fraction of species i in the Char

v :

Gas volume flow

Da:

Damköhler number

\(\overline {{\text{X}}}\) :

Average conversion

Θ:

Reduced time

References

  1. Labrecque, R., Lavoie, J.-M.: Dry reforming of methane with CO2 on an electron-activated iron catalytic bed. Bioresour. Technol. 102, 11244–11248 (2011)

    Article  Google Scholar 

  2. Banville, M., Labrecque, R., Lavoie, J.-M.: Dry reforming of methane under an electro-catalytic bed: effect of electrical current and catalyst composition. Energy Sustain. V. 186, 603–611 (2014). https://doi.org/10.2495/ESUS140531

    Google Scholar 

  3. Lavoie, J.-M.: Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front. Chem. 2, 81 (2014). https://doi.org/10.3389/fchem.2014.00081

    Article  Google Scholar 

  4. Milne, T.A., Abatzoglou, N., Evans, R.J.: Biomass gasifier “tars”: their nature, formation, and conversion, vol. 570. National Renewable Energy Laboratory, Golden (1998). https://doi.org/10.2172/3726

    Book  Google Scholar 

  5. Corella, J., Herguido, J., Gonzalez-Saiz, J., Alday, F.J., Rodriguez-Trujillo, J.L.: Fluidized bed steam gasification of biomass with dolomite and with a commercial FCC catalyst. In: Bridgwater, A.V., Kuester, J.L. (eds.) Res. Thermochem. Biomass Convers, pp. 754–765. Springer Netherlands, Dordrecht (1988). https://doi.org/10.1007/978-94-009-2737-7_57

    Chapter  Google Scholar 

  6. Narvaez, I., Orıo, A., Aznar, M.P., Corella, J.: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind. Eng. Chem. Res. 35, 2110–2120 (1996). https://doi.org/10.1021/ie9507540

    Article  Google Scholar 

  7. Devi, L., Ptasinski, K.J., Janssen, F.J.: A review of the primary measures for tars elimination in biomass gasification processes. Biomass Bioenergy. 24, 125–140 (2003)

    Article  Google Scholar 

  8. Sutton, D., Kelleher, B., Ross, J.R.H.: Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73, 155–173 (2001). https://doi.org/10.1016/S0378-3820(01)00208-9

    Article  Google Scholar 

  9. Rapagnà, S., Jand, N., Kiennemann, A., Foscolo, P.U.: Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy. 19, 187–197 (2000). https://doi.org/10.1016/S0961-9534(00)00031-3

    Article  Google Scholar 

  10. Aznar, P., Caballero, M.A., Gil, J., Martı, J.A.: Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Fuel Energy Abstr. 40, 119 (1999). https://doi.org/10.1016/S0140-6701(99)96341-5

    Google Scholar 

  11. Bangala, D.N., Abatzoglou, N., Chornet, E.: Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2, and La2O3. AIChE J. 44, 927–936 (1998). https://doi.org/10.1002/aic.690440418

    Article  Google Scholar 

  12. Brandt, P., Larson, E., Henriksen, U.: High tar reduction in a two stage gasifier. Energy Fuels 14, 816–819 (2000)

    Article  Google Scholar 

  13. Henriksen, U., Christensen, O.: Gasification of straw in a two-stage 50 kW gasifier. In: Proceedings of the 8th European Conference on Biomass for Energy, Environment, Agriculture and Industry. vol 2, pp. 1568–1578. Pergamon, Elsevier Science Ltd. Oxford, UK: (1994)

  14. Susanto, H., Beenackers, A.A.C.M.: A moving-bed gasifier with internal recycle of pyrolysis gas. Fuel. 75, 1339–1347 (1996). https://doi.org/10.1016/0016-2361(96)00083-X

    Article  Google Scholar 

  15. Hofbauer, H., Fleck, T., Veronik, G., Rauch, R., Mackinger, H., Fercher, E.: The FICFB-gasification process. In: Bridgwater, A.V., Boocock, D.G.B. (eds.) Developments in Thermochemical Biomass Conversion, pp. 1016–1025. Blackie, London (1997)

    Chapter  Google Scholar 

  16. Fercher, E., Hofbauer, H., Fleck, T., Rauch, R., Veronik, G.: Two years experience with the FICFB-gasification process. In: Kopetz, H., Weber, T., Palz, W., Chartier, P., Ferrero, G.L. (eds.) Proceedings of the Tenth European Conference and Technology Exhibition on Biomass for Energy and Industry, pp. 280–283. Wurzburg, (1998)

  17. Zschetzsche, A., Hofbauer, H., Schmidt, A.: Biomass gasification in an internal circulating fluidized bed. In: Proceedings of the Eighth European Conference on Biomass for Agriculture and Industry, vol. 3, pp. 1771–1777. (1998)

  18. Chembukulam, S.K., Dandge, A.S., Rao, N.L.K., Seshagiri, K., Vaidyeswaran, R.: Smokeless fuel from carbonized sawdust. Ind. Eng. Chem. Prod. Res. Dev. 20, 714–719 (1981). https://doi.org/10.1021/i300004a024

    Article  Google Scholar 

  19. Zwart, R.W.R., Vreugdenhil, B.J.: Tar formation in pyrolysis and gasification, Energy Research Center of the Netherlands, 37, ECN-E-08-087 (2009)

  20. Jönsson, O.: Thermal cracking of tars and hydrocarbons by addition of steam and oxygen in the cracking zone. In: Overend, R.P., Milne, T.A., Mudge, L.K. (eds.) Fundamentals of Thermochemical Biomass Conversion, pp. 733–746. Elsevier Applied Science, London (1985)

    Chapter  Google Scholar 

  21. Morf, P., Hasler, P., Hugener, M., Nussbaumer, T.: Characterization of products from biomass tar conversion. In: Bridgewater, A.V. (ed.) Progress in Thermochemical Biomass Conversion, pp. 150–161. Blackwell Science, Oxford (2001). https://doi.org/10.1002/9780470694954

    Chapter  Google Scholar 

  22. Delgado, J., Aznar, M.P., Corella, J.: Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind. Eng. Chem. Res. 36, 1535–1543 (1997). https://doi.org/10.1021/ie960237w

    Article  Google Scholar 

  23. Elliott, D.C.: Relation of reaction time and temperature to chemical compositions of pyrolysis oils. ACS Symp. Ser. 376, 55–65 (1988)

    Article  Google Scholar 

  24. Ellig, D.L., Lai, C.K., Mead, D.W., Longwell, J.P., Peters, W.A.: Pyrolysis of volatile aromatic hydrocarbons and n-heptane over calcium oxide and quartz. Ind. Eng. Chem. Process Des. Dev. 24, 1087–1080 (1985)

    Article  Google Scholar 

  25. Aldèn, H., Bjorkman, E., Carlsson, M., Wadheinm, L.: Catalytic cracking of naphthalene on dolomite, in: Bridgwater, A.V. (ed.) Advances in Thermochemical Biomass Conversion vol. 1, pp. 216–232. Blackie Academic, London (1993)

    Chapter  Google Scholar 

  26. Simell, P.A., Kurkela, E., Stahlberg, P., Hepola, J.: Developpement of catalyst gas cleaning in biomass gasification. In: Seminar on power production from biomass II. Espoo, Finland (1995)

  27. Sarvaramini, A., Larachi, F.: Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals. Fuel. 97, 741–750 (2012). https://doi.org/10.1016/j.fuel.2012.02.039

    Article  Google Scholar 

  28. Sato, K., Fujimoto, K.: Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification. Catal. Commun. 8, 1697–1701 (2007). https://doi.org/10.1016/j.catcom.2007.01.028

    Article  Google Scholar 

  29. Zhang, R., Wang, Y., Brown, R.C.: Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energy Convers. Manag. 48, 68–77 (2007). https://doi.org/10.1016/j.enconman.2006.05.001

    Article  Google Scholar 

  30. Min, Z., Yimsiri, P., Asadullah, M., Zhang, S., Li, C.Z.: Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel. 90, 2545–2552 (2011). https://doi.org/10.1016/j.fuel.2011.03.027

    Article  Google Scholar 

  31. Jacoby, W.A., Gebhard, S.C., Vojdani, R.L.: Lifetime testing of catalysts for biosyngas conditioning—single versus dual catalyst comparison. Thermochemical conversion: Process Research Branch C-Milestone Completion Report (1995)

  32. Simell, P.A., Leppälahti, J.K., Kurkela, E.A.: Tar-decomposing activity of carbonate rocks under high CO2 partial pressure. Fuel. 74, 938–945 (1995). https://doi.org/10.1016/0016-2361(95)00012-T

    Article  Google Scholar 

  33. Lai, S., Chen, P., Longwell, P.: Thermal Reaction of m-cresol over calcium oxide between 350E and 600EC. Fuel. 66, 525–531 (1987)

    Article  Google Scholar 

  34. Font Palma, C.: Modelling of tar formation and evolution for biomass gasification: a review. Appl. Energy. 111, 129–141 (2013). https://doi.org/10.1016/j.apenergy.2013.04.082

    Article  Google Scholar 

  35. Mathieu, P., Dubuisson, R.: Performance analysis of a biomass gasifier. Energy Convers. Manag. 43, 1291–1299 (2002). https://doi.org/10.1016/S0196-8904(02)00015-8

    Article  Google Scholar 

  36. Cantelo, R.C.: The thermal decomposition of methane. J. Phys. Chem. 28, 1036–1048 (1924)

    Article  Google Scholar 

  37. Towell, G.D., Martin, J.J.: Kinetic data from nonisothermal experiments: thermal decomposition of ethane, ethylene, and acetylene. AIChE J. 7, 693–698 (1961). https://doi.org/10.1002/aic.690070432

    Article  Google Scholar 

  38. Buekens, A.G., Froment, G.F.: Thermal cracking of propane. Kinetics and products distributions. Ind. Eng. Chem. Process Des. Dev. 7, 435–447 (1968)

    Article  Google Scholar 

  39. Choudhary, V.R., Rane, V.H., Rajput, A.M.: Simultaneous thermal cracking and oxidation of propane to propylene and ethylene. AIChE J. 44, 2293–2301 (1998). https://doi.org/10.1002/aic.690441018

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to funders of the Industrial Research Chair on Cellulosic Ethanol and Biocommodities of the Université de Sherbrooke and NSERC (CRDPJ 486964-2015) for their support, to Esteban Chornet for his guidance throughout this project, and to Boris Valsecchi for technical assistance. The authors would also like to thank MITACS (Grant Number IT03931) for supporting Dr Gnouyaro Palla Assima’s salary during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lavoie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assima, G.P., Paquet, A. & Lavoie, JM. Utilization of MSW-Derived Char for Catalytic Reforming of Tars and Light Hydrocarbons in the Primary Syngas Produced During Wood Chips and MSW-RDF Air Gasification. Waste Biomass Valor 10, 1203–1222 (2019). https://doi.org/10.1007/s12649-017-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0138-0

Keywords

Navigation