Skip to main content

Advertisement

Log in

One Pot Cascade Conversion of Bio-Based Furfural to Levulinic Acid with Cu-Doped Niobium Phosphate Catalysts

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Liquid-phase catalytic hydrogenation of furfural, followed by hydration to levulinic acid has been considered as one of efficient approaches for upgrading pentose sugars. However, a two-step process is generally employed, which involves the separation and purification of the key intermediate furfuryl alcohol from the reaction mixture. To simplify this catalytic process with improved efficiency, Cu-doped niobium phosphate (xCu/NbP; x = 0.1–5.0 wt%, denoted as Cu loading) catalysts with different Cu loadings were prepared by impregnation and reduction, which could catalyze furfural conversion to levulinic acid through a one pot single-step process. The as-prepared xCu/NbP catalysts were characterized by H2-TPR, XRD, NH3-TPD, XPS, the pore size and pore volume and pyridine-adsorption FT-IR. In this study, the effect of Cu loading, formic acid amount, support type, reaction temperature/time and catalyst reusability on the reaction were investigated. It was found that 1.5 wt% Cu/NbP loading exhibited predominant catalytic activity in the cascade conversion of furfural, producing levulinic acid with a high yield of up to 67.0 mmol% using ten equivalent of formic acid at 160 °C for 3 h. Moreover, the possible mechanism was further elucidated. Also, the catalyst could be easily separated from the mixture, and reused with no remarkable loss of reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, H.W., Mahmood, N., Ma, Z., Zhu, M.Q., Wang, J.Q., Zheng, J.L., Yuan, Z.S., Wei, Q., Xu, C.: Preparation and characterization of bio-polyol and bio-based flexible polyurethane foams from fast pyrolysis of wheat straw. Ind. Crop Prod. 103, 64–72 (2017)

    Article  Google Scholar 

  2. Wangchuk, T., He, C., Knibbs, L.D., Mazaheri, M., Morawska, L.: A pilot study of traditional indoor biomass cooking and heating inrural Bhutan: gas and particle concentrations and emission rates. Indoor Air. 27, 160–168 (2017)

    Article  Google Scholar 

  3. Dias, G.M., Ayer, N.W., Khosla, S., Acker, R.V., Young, S.B., Whitney, Y., Hendricks, P.: Life cycle perspectives on the sustainability of Ontario greenhouse tomato production. J. Clean. Prod. 140, 831–839 (2017)

    Article  Google Scholar 

  4. Li, H., Bhadury, P.S., Riisager, A., Yang, S.: One-pot transformation of polysaccharides viamulti-catalytic processes. Catal. Sci. Technol. 4, 4138–4168 (2014)

    Article  Google Scholar 

  5. Holm, M.S., Saravanamurugan, S., Taarning, E.: Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science. 328, 602–605 (2010)

    Article  Google Scholar 

  6. Saravanamurugan, S., Tosi, I., Rasmussen, K.H., Jensen, R.E., Taarning, E., Meier, S., Riisager, A.: Acile and benign conversion of sucrose to fructose using zeolites with balanced Brønsted and lewis acidity. Catal. Sci. Technol. (2017). https://doi.org/10.1039/C7CY00540G

    Google Scholar 

  7. Li, H., Zhen, F. Jr., Yang, R.L.S.: Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 55, 98–194 (2016)

    Article  Google Scholar 

  8. Yang, F.X., Hanna, M.A., Sun, R.C.: Value-added uses for crude glycerol–A byproduct of biodiesel production. Biotechnol. Biofuels. 5, 13 (2012)

    Article  Google Scholar 

  9. Loaces, I., Schein, S., Noya, F.: Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of amultifunctional glucanase and xylanase. Bioresour. Technol. 224, 307–313 (2017)

    Article  Google Scholar 

  10. Li, H., Fang, Z., Luo, J., Yang, S.: Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl. Catal. B. 200, 182–191 (2017)

    Article  Google Scholar 

  11. Aida, T.M., Qi, X.H., Hiraga, Y.Y., Aida, T.M. Jr., Smith R.L.: Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem. Eng. J. 314, 508–514 (2017)

    Article  Google Scholar 

  12. Zhang, L.X., Xi, G.Y., Zhang, J.X., Yu, J.X., Yu, H.B., Wang, X.C.: Efficient catalytic system for the direct transformation of lignocellulosicbiomass to furfural and 5-hydroxymethylfurfural. Bioresour. Technol. 224, 656–661 (2017)

    Article  Google Scholar 

  13. Shen, F. Jr., Li, R.L.S., Yan, L.Y., Qi, L.L.: Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain. Chem. Eng. 5, 2421–2427 (2017)

    Article  Google Scholar 

  14. Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., Giorgi, J.B.: Efficient green catalysis for the conversion of fructose to levulinic acid. Appl. Catal. A Gen. 539, 70–79 (2017)

    Article  Google Scholar 

  15. Liu, Y.X., Li, H., He, J., Zhao, W.F., Yang, T.T., Yang, S.: Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides. Catal. Commun. 93, 20–24 (2017)

    Article  Google Scholar 

  16. Kang, S.M., Zhang, G., Yang, X.S., Yin, H.B., Fu, X.B., Liao, J.X., Tu, J.L., Huang, X.X., Qin, F.G.F., Xu, Y.J.: Effects of p‑toluenesulfonic acid in the conversion of glucose for levulinic acid and sulfonated carbon production. Energy Fuels. 31, 2847–2854 (2017)

    Article  Google Scholar 

  17. Wei, W.Q., Wu, S.B.: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids. Chem. Eng. J. 307, 389–398 (2017)

    Article  Google Scholar 

  18. Villaverde, M.M., Bertero, N.M., Garetto, T.F., Marchi, A.J.: Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today. 213, 87–92 (2013)

    Article  Google Scholar 

  19. Rackemann, D.W., Doherty, W.O.: The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Bioref. 5,198–214 (2011)

    Article  Google Scholar 

  20. Ishikawa, S., Jones, D.R., Iqbal, S., Reece, C., Morgan, D.J., Willock, D.J., Miedziak, P.J., Bartley, J.K., Edwards, J.K., Murayama, T., Ueda, W., Hutchings, G.J.: Identification of the catalytically active component of Cu-Zr-O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chem. 19, 225–236 (2017)

    Article  Google Scholar 

  21. Geilen, F.M.A., Engendahl, B., Harwardt, A., Marquardt, W., Klankermayer, J., Leitner, W.: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 49, 5510–5514 (2010)

    Article  Google Scholar 

  22. Podolean, I., Kuncser, V., Gheorghe, N., Macovei, D., Parvulescu, V.I., Coman, S.M.: Ru-based magnetic nanoparticles (MNP) for succinicacid synthesis from levulinic acid. Green Chem. 15, 3077–3082 (2013)

    Article  Google Scholar 

  23. Vyver, S.V., Helsen, S., Geboers, J., Yu, F., Thomas, J., Smet, M., Dehaen, W., Leshkov, Y.R., Hermans, I., Sels, B.F.: Mechanistic insights into the kinetic and regiochemical control of the thiol-promoted catalytic synthesis of diphenolic acid. ACS Catal. 2, 2700–2704 (2012)

    Article  Google Scholar 

  24. Vidal, J.D., Climent, M.J., Corma, A., Concepcion, D.P., Iborra, S.: One-pot selective catalytic synthesis of pyrrolidone derivatives from ethyl levulinate and nitro compounds. ChemSusChem. 10, 119–128 (2017)

    Article  Google Scholar 

  25. Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T.: Efficient green catalysis for the conversion of fructose to levulinic acid. Appl. Catal. A Gen. 539, 70–79 (2017)

    Article  Google Scholar 

  26. Hu, X., Westerhof, R.J.M., Wu, L.P., Dong, D.H., Li, C.Z.: Upgrading biomass-derived furans via acid-catalysis/hydrogenation: the remarkable difference between water and methanol as the solvent. Green Chem. 17, 219–224 (2015)

    Article  Google Scholar 

  27. Chamnankid, B., Ratanatawanate, C., Faungnawakij, K.: Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water. Chem. Eng. J. 258, 341–347 (2014)

    Article  Google Scholar 

  28. Gupta, K., Tyagi, D., Dwivedi, A.D., Mobin, S.M., Singh, S.K.: Catalytic transformation of bio-derived furans to valuable ketoacids and diketones by water-soluble ruthenium catalysts. Green Chem. 17, 4618–4627 (2015)

    Article  Google Scholar 

  29. Hu, X., Song, Y., Wu, L.P., Gholizadeh, M., Li, C.J.:One-pot synthesis of levulinic acid/ester from C5 Carbohydrates in a Methanol Medium.ACS Sustain. Chem. Eng.1,1593–1599 (2017)

    Article  Google Scholar 

  30. Alonso, D.M., Wettstein, S.G., Mellmer, M.A., Gurbuz, E.I., Dumesic, J.A.: Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass.Energy Environ. Sci. 6, 76–80 (2017)

    Article  Google Scholar 

  31. Ghashghaee, M., Sadjadi, S., Shirvani, S., Farzaneh, V.: A novel consecutive approach for the preparation of Cu-MgO catalysts with high activity for hydrogenation of furfural to furfuryl alcohol. Catal. Lett. 147, 318–327 (2017)

    Article  Google Scholar 

  32. Jiménez-Gómez, C.P., Cecilia, J.A., Durán-Martín, D., Moreno-Tost, R., Santamaría-González, J., Mérida-Robles, J., Mariscal, R., Maireles-Torres, P.: Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J. Catal. 336, 107–115 (2016)

    Article  Google Scholar 

  33. Jiménez-Gómez, C.P., Cecilia, J.A., Márquez-Rodríguez, I., Moreno-Tost, R., Santamaría-González, J., Mérida-Robles, J., Maireles-Torres, P.: Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catal. Today. 279, 327–338 (2017)

    Article  Google Scholar 

  34. Jaatinen, S.K., Karinen, R.S., Lehtonen, J.S.: Liquid phase furfural hydrotreatment to 2-methylfuran with carbon supported copper, nickel, and iron catalysts. Chem. Select. 2, 51–60 (2017)

    Google Scholar 

  35. Villaverde, M.M., Garetto, T.F., Marchi, A.J.: Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catal. Commun. 58, 6–10 (2017)

    Article  Google Scholar 

  36. Gong, W.B., Chen, Y., Zhou, H.J., Wang, H.M., Zhang, H.M., Zhang, Y.X., Wang, G.Z., Zhao, H.J.: Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustain. Chem. Eng. 5, 2172–2180 (2017)

    Article  Google Scholar 

  37. Ying, D.H.S., Robert, J.M.: Thermal desorption study of formic acid decomposition on a clean Cu (110) surface.J. Catal. 61, 48–56 (2017)

    Article  Google Scholar 

  38. Henn, F.C., Rodriguez, J.A., Campbell, C.T.: Adsorption and reaction of HCOOH on doped Cu (110): Coadsorption with cesium, oxygen, and Csa + Oa.. Surf. Sci. 236, 282–312 (1990)

    Article  Google Scholar 

  39. Gürbüz, E.I., Wettstein, S.G., Dumesic, J.A.: Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem. 5, 383–387 (2012)

    Article  Google Scholar 

  40. Paniagua, M., Melero, J.A., Iglesias, J., Morales, G., Hernández, B., López-Aguado, C.: Catalytic upgrading of furfuryl alcohol to bio-products: Catalysts screening and kinetic analysis. Appl. Catal. A Gen. 537, 74–82 (2017)

    Article  Google Scholar 

  41. Islam, M.M., Bhunia, S., Molla, R.A., Bhaumik, A., Islam, S.M.: Organic solid acid catalyst for efficient conversion of furfuryl alcohol to biofuels. Chem. Select. 1, 6079–6085 (2016)

    Google Scholar 

  42. Kong, X.J., Wu, S.X., Li, X.L., Liu, J.H.: Efficient conversion of levulinic acid to ethyl levulinate over asilicotungstic-acid-modified commercially silica-gel sphere catalyst. Energy Fuels. 30, 6500–6504 (2016)

    Article  Google Scholar 

  43. Song, D.Y., An, S., Sun, A.N., Zhang, P.P., Guo, Y.H., Zhou, D.D.: Ethane-bridged organosilica nanotubes functionalized with arenesulfonic acid and phenyl groups for the efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. ChemCatChem. 8, 2037–2048 (2016)

    Article  Google Scholar 

  44. Paulino, P.N., Perez, R.F., Figueiredo, N.G., Fraga, M.N.: Tandem dehydration-transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chem. 19, 3759–3763 (2017)

    Article  Google Scholar 

  45. Carniti, P., Gervasini, A., Biella, S., Auroux, A.: Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach.Chem. Mater. 17, 6128–6136 (2005)

    Article  Google Scholar 

  46. Sarkar, A., Pramanik, P.: Synthesis of mesoporous niobium oxophosphate using niobium tartrate precursor by soft templating method. Micropor. Mesopor. Mater. 117, 580–585 (2009)

    Article  Google Scholar 

  47. Mal, N. K., Bhaumik, A., Fujiwara, M., Matsukata, M.: Novel organic–inorganic hybrid and organic-free mesoporous niobium oxophosphate synthesized in the presence of an anionic surfactant. Micropor. Mesopor. Mater. 93, 40–45 (2006)

    Article  Google Scholar 

  48. Dwivedi, A.D., Gupta, K., Tyagi, D., Rai, R.K., Mobin, S.M., Singh, S.K.: Ruthenium and formic acid based tandem catalytic transformation of bioderived furans to levulinic acid and diketones in water. ChemCatChem. 7, 4050–4058 (2015)

    Article  Google Scholar 

  49. Alonso, D.M., Wettstein, S.G., Mellmer, M.A., Gurbuz, E.I., Dumesic, J.A.: Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ. Sci. 6, 76–80 (2013)

    Article  Google Scholar 

  50. Winoto, H.P., Ahn, B.S., Jae, J.: Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: Optimizing the catalyst acid properties and process conditions. J. Ind. Eng. Chem. 40, 62–71 (2016)

    Article  Google Scholar 

  51. Xia, Z.J., Liu., H.Y., Lu, H.F., Zhang, Z.K., Chen, Y.F.: High selectivity of cyclohexane dehydrogenation for H2 evolution over Cu/SBA-15 Catalyst. Catal. Lett. 147,1295–1302 (2017)

    Article  Google Scholar 

  52. Wen, C., Yin, A.Y., Cui, Y.Y., Yang, X.L., Dai, W.L., Fan, K.N.: Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate. Catal. A Gen. 458, 82–89 (2017)

    Article  Google Scholar 

  53. Sheng, H.B., Lobo, R.F.: Iron-promotion of silica-supported copper catalysts for furfural hydrodeoxygenation. ChemCatChem 8, 1–8 (2016)

    Article  Google Scholar 

  54. Iglesia, E., Michel, B.: Unimolecular and bimolecular formic acid decomposition on copper. J. Phys. Chem. 20, 5272–5274 (1986)

    Article  Google Scholar 

  55. Upare, P.P., Lee, J.M., Hwang, Y.K., Hwang, D.W., Lee, J.H., Halligudi, S.B., Hwang, J.S., Chang, J.S.: Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4, 1749–1752 (2011)

    Article  Google Scholar 

  56. Sharma, R.V., Das, U., Sammynaiken, R., Dalai, A.K.: Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol. Appl. Catal. A Gen. 454, 127–136 (2013)

    Article  Google Scholar 

  57. Wang, G., Zhang, Z., Song, L.: Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chem. 16, 1436–1443 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 21576059, 21666008), and Key Technologies R&D Program of China (Grant No. 2014BAD23B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Li or Song Yang.

Additional information

Chengjiang Fang and Yanxiu Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 603 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Liu, Y., Wu, W. et al. One Pot Cascade Conversion of Bio-Based Furfural to Levulinic Acid with Cu-Doped Niobium Phosphate Catalysts. Waste Biomass Valor 10, 1141–1150 (2019). https://doi.org/10.1007/s12649-017-0131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0131-7

Keywords

Navigation