Skip to main content
Log in

Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The main objective of the current study is to develop and assess the preliminary synthetic design steps of an innovative and unprecedented bioprocess plant converting Turkish hazelnut husk into lignocellulosic ethanol with an emphasis on economic evaluation. Valorization of this agricultural waste would provide a promising economic potential and long-term sustainability with acceptable environmental impact. Preliminary economic evaluations are performed on several scenarios where the effects of changing various process design and operational inputs such as designed plant capacity, evaporation unit operation efficiency, and biocatalyst and nitrogen source prices are simulated. The total capital investment for the base case scenario with an annual throughput of 180,000 metric tons (MT) hazelnut husk is just above USD 111 million. The annual operational costs for this case amount to USD 61 million. Assuming a sales price of USD 1.50 per kg of bioethanol (achieved via governmental subsidy and tax incentives) the return on investment of the project comes to 12.61% with a 8 year payback period. An uncertainty analysis performed on the annual hazelnut husk availability and biocatalyst and nitrogen source price fluctuations establishes a basis for further design of the process taking into account the risk factors associated with the project. The case studies and the uncertainty analysis confirm the fact that production of second generation bioethanol from hazelnut husk in Turkey is a worthwhile endeavor with an economic potential especially with additional social and environmental advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajanovic, A.: Biofuels versus food production: does biofuels production increase food prices? Energy. 36, 2070–2076 (2011)

    Article  Google Scholar 

  2. Fischer, G., Hizsynik, E., Prieler, S., Shah, M., van Velthuizen, H.: Biofuels, Security, Food. Vienna, OFID/IIASA, Stiepan Druck GmbH. http://pure.iiasa.ac.at/8969 (2009). Accessed 12 May 2017

  3. Searle, S., Malins, C.: A reassessment of global bioenergy potential in 2050. GCB Bioenergy. 7, 328–336 (2015)

    Article  Google Scholar 

  4. Guney, M.S.: Utilization of hazelnut husk as biomass. Sustainable Energy Technol. Assess. 4, 72–77 (2013)

    Article  Google Scholar 

  5. OCEM: Hazelnut Production Statistics. Ordu Commodity Exchange Market. http://www.ordutb.org.tr/en/findik (2015). Accessed 12 May 2017

  6. Ceylan, S., Topçu, Y.: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource. Technol. 156, 182–188 (2014)

    Article  Google Scholar 

  7. De Franchi, M., Boubaker, K.: Valorization of hazelnut biomass framework in Turkey: support and model guidelines from the italian experience in the field of renewable energy. Int. J. Sustain. Energy Environ. Res. 3, 130–144 (2014)

    Google Scholar 

  8. Stévigny, C., Rolle, L., Valentini, N., Zeppa, G.: Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. J. Sci. Food Agric. 87, 2817–2822 (2007)

    Article  Google Scholar 

  9. Çimen, F., Ok, S.S., Kayran, C., Demirci, Ş., Özenç, D.B., Özenç, N.: Characterization of humic materials extracted from hazelnut husk and hazelnut husk amended soils. Biodegradation. 18, 295–301 (2007)

    Article  Google Scholar 

  10. Brás, I., Figueirinha, A., Esteves, B., Cruz-Lopes, L.P.: Valorization of lignocellulosic wastes–evaluation of its toxicity when used in adsorption systems. World Acad. Sci. Eng. Technol. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 8, 443–447 (2014)

    Google Scholar 

  11. Gnansounou, E., Dauriat, A.: Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour. Technol. 101, 4980–4991 (2010)

    Article  Google Scholar 

  12. Larsen, J., Petersen, M.Ø., Thirup, L., Li, H.W., Iversen, F.K.: The IBUS process–lignocellulosic bioethanol close to a commercial reality. Chem. Eng. Technol. 31, 765–772 (2008)

    Article  Google Scholar 

  13. Lee, S., Posarac, D., Ellis, N.: Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Des. 89, 2626–2642 (2011)

    Article  Google Scholar 

  14. Morales-Rodriguez, R., Meyer, A.S., Gernaey, K.V., Sin, G.: Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose. Bioresour. Technol. 102, 1174–1184 (2011)

    Article  Google Scholar 

  15. Prunescu, R.M., Sin, G.: Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process—a demonstration scale study. Bioresour. Technol. 150, 393–403 (2013)

    Article  Google Scholar 

  16. Sotoft, L.F., Rong, B.G., Christensen, K.V., Norddahl, B.: Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresour. Technol. 101, 5266–5274 (2010)

    Article  Google Scholar 

  17. Yun, H., Wang, M., Feng, W., Tan, T.: Process simulation and energy optimization of the enzyme-catalyzed biodiesel production. Energy. 54, 84–96 (2013)

    Article  Google Scholar 

  18. Barrera, I., Amezcua-Allieri, M.A., Estupiñan, L., Martínez, T., Aburto, J.: Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem. Eng. Res. Des. 107, 91–101 (2016)

    Article  Google Scholar 

  19. Brunet, R., Boer, D., Guillén-Gosálbez, G., Jiménez, L.: Reducing the cost, environmental impact and energy consumption of biofuel processes through heat integration. Chem. Eng. Res. Des. 93, 203–212 (2015)

    Article  Google Scholar 

  20. Ferrari, M.D., Guigou, M., Lareo, C.: Energy consumption evaluation of fuel bioethanol production from sweet potato. Bioresour. Technol. 136, 377–384 (2013)

    Article  Google Scholar 

  21. Gunukula, S., Keeling, P.L., Anex, R.: Risk advantages of platform technologies for biorenewable chemical production. Chem. Eng. Res. Des. 107, 24–33 (2016)

    Article  Google Scholar 

  22. Mabrouki, J., Abbassi, M.A., Guedri, K., Omri, A., Jeguirim, M.: Simulation of biofuel production via fast pyrolysis of palm oil residues. Fuel. 159, 819–827 (2015)

    Article  Google Scholar 

  23. Ramirez, E.C., Johnston, D.B., McAloon, A.J., Yee, W., Singh, V.: Engineering process and cost model for a conventional corn wet milling facility. Ind. Crops Prod. 27, 91–97 (2008)

    Article  Google Scholar 

  24. Rouf, S., Douglas, P., Moo-Young, M., Scharer, J.: Computer simulation for large scale bioprocess design. Biochem. Eng. J. 8, 229–234 (2001)

    Article  Google Scholar 

  25. Çöpür, Y., Güler, C., Akgül, M., Taşçıoğlu, C.: Some chemical properties of hazelnut husk and its suitability for particleboard production. Build. Environ. 47, 2568–2572 (2007)

    Article  Google Scholar 

  26. Bondesson, P.M., Galbe, M., Zacchi, G.: Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol. Biofuels. 6, 6–11 (2013)

    Article  Google Scholar 

  27. Liu, Z.H., Chen, H.Z.: Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Bioresour. Technol. 193, 345–356 (2015)

    Article  Google Scholar 

  28. Lima-Costa, M.E., Tavares, C., Raposo, S., Rodrigues, B., Peinado, J.M.: Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. J. Ind. Microbiol. Biotechnol. 39, 789–797 (2012)

    Article  Google Scholar 

  29. Talebnia, F., Karakashev, D., Angelidaki, I.: Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101, 4744–4753 (2010)

    Article  Google Scholar 

  30. Varga, E., Réczey, K., Zacchi, G.: Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotechnol. 114, 509–523 (2004)

    Article  Google Scholar 

  31. Diao, L., Liu, Y., Qian, F., Yang, J., Jiang, Y., Yang, S.: Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotecnol. 13(110), 1–9 (2013)

    Google Scholar 

  32. http://www.neo.ne.gov. Accessed 01 Aug 2017

  33. http://www.thehindu.com. Accessed 01 Aug 2017

  34. http://www.sra.gov.ph. Accessed 01 Aug 2017

  35. http://www.dir.indiamarket.com. Accessed 01 Aug 2017

  36. http://www.heyreport.com. Accessed 01 Aug 2017

  37. http://www.alibaba.com. Accessed 01 Aug 2017

  38. Peters, M.S., Timmerhaus, K.D., West, R.E.: Plant Design and Economics for Chemical Engineers. McGraw Hill, New York (2004)

    Google Scholar 

  39. Özen, R., Sayar, N.A., Durmaz-Sam, S., Sayar, A.A.: A sigmoidal model for biosorption of heavy metal cations from aqueous media. Math. Biosci. 265, 40–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miller, N., Christensen, A., Park, J.E., Baral, A., Malins, C., Searle, C.S.: Measuring and Addressing Investment Risk in the Second-Generation Biofuels Industry. International Council on Clean Transportation, Washington (2013)

    Google Scholar 

  41. EC: Horizon 2020 Work Programme 2016–2017 5ii. Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing. European Commission, Luxembourg (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Marmara University, Scientific Research Projects Committee (BAPKO) by the Project Number FEN-E-130313-0077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Alp Sayar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayar, N.A., Pinar, O., Kazan, D. et al. Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor 10, 909–923 (2019). https://doi.org/10.1007/s12649-017-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0103-y

Keywords

Navigation