Waste and Biomass Valorization

, Volume 9, Issue 3, pp 479–489 | Cite as

Options for Generation of Sustainable Energy: Production of Pellets Based on Combinations Between Lignocellulosic Biomasses

  • Mário Vanoli Scatolino
  • Lázaro Ferreira Cabral Neto
  • Thiago de Paula Protásio
  • Angélica de Cássia Oliveira Carneiro
  • Carlos Rogério Andrade
  • José Benedito Guimarães Júnior
  • Lourival Marin Mendes
Original Paper
  • 85 Downloads

Abstract

Brazil has a highlighted position in comparison to other countries in relation to the amount of renewable raw materials, as the lignocellulosic wastes, and technologies for production of alternative energy. The aim of the study was to evaluate the potential of lignocellulosic wastes such as: from soybean culture, sugarcane bagasse and eucalyptus wood for pellets production focusing the generation of heat energy, and classify them according to the commercialization standards. The properties as heating value, bulk density, energetic density and proximate analysis of the biomasses were evaluated. The pellets were produced with diameter of 6 mm in a horizontal planar array pelletizer. The raw material used generated pellets with eucalyptus and soybean wastes mixed in different proportions, as well was done for sugarcane bagasse and soybean wastes. These mixtures were compared to pellets composed by 100% soybean wastes, 100% sugarcane bagasse and commercial pellets produced with pine wood. The pellets were evaluated through the physical properties (moisture, bulk density and unitary density), energetic properties (heating value and energetic density), chemical properties (volatiles, fixed carbon and ash) and mechanical properties (hardness and mechanical durability). Among the pellets produced, the 100% sugarcane bagasse highlighted by high values for mechanical durability (96.64%), hardness (39.46 kgf) and energetic densities, besides low production of fines (0.18%). Pellets composed by the tested mixtures obtained higher values for heating value, mechanical durability, hardness and lower fines and ashes content in comparison to the pellets composed only by soybean wastes. The increasing of eucalyptus sawdust percentage in the pellets decreased their ashes content in comparison to the 100% soybean wastes (from 26.72 to 14.03%). The sugarcane bagasse pellets showed similar properties to the commercial ones.

Keywords

Energetic density Densification Solid biofuels Lignocellulosic wastes 

Notes

Acknowledgements

The authors thank to Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG, Fundação de Amparo à Pesquisa do Estado de Goiás—FAPEG, Coordenacão de Aperfeiçoamento de Pessoa de Nível Superior—CAPES. Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazilian Research Network in Lignocellulosic Composites and Nanocomposites—RELIGAR.

References

  1. 1.
    Aragón-Garita, S., Moya, R., Bond, B., Valaert, J., Filho, M.T.: Production and quality analysis of pellets manufactured from five potential energy crops in the Northern Region of Costa Rica. Biomass Bioenergy 87, 84–95 (2016)CrossRefGoogle Scholar
  2. 2.
    ASTM D 1762-84.: American Society for Testing Materials—Standard Method for Chemical Analyses of Wood Charcoal. ASTM International, Philadelphia (2007)Google Scholar
  3. 3.
    ASTM E711-87.: American Society For Testing Materials—Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter. ASTM International, Philadelphia (2004)Google Scholar
  4. 4.
    Brand, M.A.: Forest Biomass Energy. Interciência, Rio de Janeiro (2010)Google Scholar
  5. 5.
    Carroll, J.P., Finnan, J.: Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Eng. 112, 151–159 (2012)CrossRefGoogle Scholar
  6. 6.
    Castellano, J.M., Gómez, M., Fernández, M., Esteban, L.S., Carrasco, J.E.: Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 139, 629–636 (2015)CrossRefGoogle Scholar
  7. 7.
    Choi, H.L., Sudiarto, S.I.A., Renggaman, A.: Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 116, 772–780 (2014)CrossRefGoogle Scholar
  8. 8.
    Conab.: Companhia Nacional De Abastecimento—Follow-up of the Brazilian sugarcane crop. Conab, Brasília (2015)Google Scholar
  9. 9.
    Dias, J.M.C.S., Souza, D.T., Braga, M.: Production of briquettes and pellets from agricultural, agroindustrial and forestry wastes. Embrapa Agroenergia, Brasília (2012)Google Scholar
  10. 10.
    DIN EN 14774-1.: Deutsches Institut Für Normung—Determination of Moisture Content—Oven Dry Method—Part 1: Total moisture—Reference Method. DIN EN 14774-1, Berlin (2010)Google Scholar
  11. 11.
    DIN EN 14961-2.: Deutsches Institut Für Normung—Solid biofuels: Fuel specifications and classes – Part 2: Wood pellets for non-industrial use. DIN EN 14961-2, Berlin (2011)Google Scholar
  12. 12.
    DIN EN 14961-6.: Deutsches Institut Für Normung—Solid biofuels: Fuel specifications and classes—Part 6: Non-Woody Pellets for Non-Industrial Use. DIN EN 14961-6, Berlin (2012)Google Scholar
  13. 13.
    DIN EN 15103.: Deutsches Institut Für Normung—Determination of bulk density. DIN EN 15103, Berlin (2010)Google Scholar
  14. 14.
    DIN EN 15210-1.: Deutsches Institut Für Normung—Solid biofuels—Determination of mechanical durability of pellets and briquettes—Part 1: Pellets. DIN EN 15210-1, Berlin (2010)Google Scholar
  15. 15.
    Duca, D., Riva, G., Foppa Pedretti, E., Toscano, G.: Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 135, 9–14 (2014)CrossRefGoogle Scholar
  16. 16.
    EPE.: Empresa De Pesquisa Energética—National Energetic Balance: Base 2013. EPE, Rio de Janeiro (2014)Google Scholar
  17. 17.
    Faria, W.S., Protásio, T.P., Trugilho, P.F., Pereira, B.L.C., Carneiro, A.C.O., Andrade, C.R., Guimarães Junior, J.B.: Transformation of lignocellulosic waste of coffee into pellets for thermal power generation. Coffee. Sci. 11, 137–147 (2016)Google Scholar
  18. 18.
    Garcia, D.P., Caraschi, J.C., Ventorim, G.: Energetic characterization of wood pellets. Rev. Madeira 135, 14–18 (2013)Google Scholar
  19. 19.
    García-Maraver, A., Popov, V., Zamorano, M.: A review of European standards for pellet quality. Renew. Energy 36, 3537–3540 (2011)CrossRefGoogle Scholar
  20. 20.
    García-Maraver, A., Rodriguez, M.L., Serrano-Bernardo, F., Diaz, L.F., Zamorano, M.: Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 129, 1–7 (2015)CrossRefGoogle Scholar
  21. 21.
    Garcia, D.P., Caraschi, J.C., Ventorim, G.: The wood pellets sector in Brazil. Ciência da Madeira 8, 21–28 (2017)CrossRefGoogle Scholar
  22. 22.
    García, R., Pizarro, C., Lavín, A. G., Bueno, J. L.: Biomass proximate analysis using thermogravimetry. Bioresour. Technol. 139, 1–4 (2013)CrossRefGoogle Scholar
  23. 23.
    Gil, M.V.P., Oulego, M.D., Casal, C., Pevida, C., Pis, J.J., Rubiera, F.: Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour. Technol. 101, 8859–8867 (2010)CrossRefGoogle Scholar
  24. 24.
    Ishii, K., Furuichi, T.: Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 34, 2621–2626 (2014)CrossRefGoogle Scholar
  25. 25.
    Jenkins, B., Baxter, L., Miles, J.R.: Combustion properties of biomass. Fuel Process. Technol. 54, 17–46 (1998)CrossRefGoogle Scholar
  26. 26.
    Lehtikangas, P.: Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 20, 351–360 (2001)CrossRefGoogle Scholar
  27. 27.
    Liu, Z., Liu, X., Fei, B., Jiang, Z., Cai, Z., Yua, Y.: The properties of pellets from mixing bamboo and rice straw. Renew. Energy 55, 1–5 (2013)CrossRefGoogle Scholar
  28. 28.
    Liu, Z., Mi, B., Jiang, Z., Fei, B., Cai, Z., Liu, X.: Improved bulk density of bamboo pellets as biomass for energy production. Renew. Energy 86, 1–7 (2016)CrossRefGoogle Scholar
  29. 29.
    Liu, Z.G., Quek, A., Balasubramanian, R.: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Appl. Energy 113, 1315–1322 (2014)CrossRefGoogle Scholar
  30. 30.
    Lora, E.E.S., Ayarza, J.A.C.: Gasification. Biomass for Energy. Campinas-SP: Unicamp 241–327 (2008)Google Scholar
  31. 31.
    Madadian, E., Akbarzadeh, A.H., Lefsrud, M.: Pelletized composite wood fiber mixed with plastic as advanced solid biofuels: thermo-chemical analysis. Waste Biomass Valor. 8, 1–15 (2017)CrossRefGoogle Scholar
  32. 32.
    Mahapatra, A.K., Harris, D.L., Durham, D.L., Lucas, S., Terril, T.H., Kouakou, B., Kannan, G.: Effect of moisture change on the physical and thermal properties of Sericea lespedeza pellets. Int. Agr. Eng. J. 19, 23–29 (2010)Google Scholar
  33. 33.
    Mani, S., Tabil, L.G., Sokhansanj, S.: Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30, 648–654 (2006)CrossRefGoogle Scholar
  34. 34.
    Moreno-Lopez, M., Alarcón-Herrera, M.T., Martin-Dominguez, I.R.: Feasibility of pelletizing forest residues in Northern Mexico. Waste Biomass Valor. 8, 923–932 (2017)CrossRefGoogle Scholar
  35. 35.
    Moya, R., Rodríguez-Zúñiga, A., Tenorio, C., Valdez, J., Valaert, J.: Pellets evaluation made from tropical-climate agricultural and forestry crops of Costa Rica with a domestic stove. Waste Biomass. Valor. 6, 1037–1046 (2015)CrossRefGoogle Scholar
  36. 36.
    Nhuchhen, D.R., Salam, P.A.: Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 99, 55–63 (2012)CrossRefGoogle Scholar
  37. 37.
    Niedziółka, I., Szpryngiel, M., Kachel-Jakubowska, M., Kraszkiewicz, A., Zawiślak, K., Sobczak, P., Nadulski, R.: Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 76, 312–317 (2015)CrossRefGoogle Scholar
  38. 38.
    Nunes, L.J.R., Matias, J.C.O., Catalao, J.P.S.: Mixed biomass pellets for thermal energy production: A review of combustion models. Appl. Energy 127, 135–140 (2014)CrossRefGoogle Scholar
  39. 39.
    Obernberger, I., Thek, G.: The pellet Handbook: The Production and Thermal Utilisation of Pellets. Earthscan, London (2010)Google Scholar
  40. 40.
    Paula, L.E.R., Trugilho, P.F., Napoli, A., Bianchi, M.L.: Characterization of residues from plant biomass for use in energy generation. Cerne 17, 237–246 (2011)CrossRefGoogle Scholar
  41. 41.
    Peng, J., Wang, J.I.: Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process. Technol. 119, 168–173 (2015)CrossRefGoogle Scholar
  42. 42.
    Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.L., Vital, B.R., Oliveira, A.C., Canal, W.D.: Influence of adding kraft lignin in eucalyptus pellets properties. Floresta 46, 235–242 (2016)CrossRefGoogle Scholar
  43. 43.
    Protásio, T.P., Alves, I.C.N., Trugilho, P.F., Silva, V.O., Baliza, A.E.R.B.: Compaction of plant biomass for solid biofuels production. Pesqui. Florestal Bras. 31, 273–283 (2011)CrossRefGoogle Scholar
  44. 44.
    Protásio, T.P., Neves, T.A., Reis, A.A., Trugilho, P.F.: Effect of age and clone on the quality of Eucalyptus spp wood aiming bioenergy production. Ciência Florestal 24, 465–477 (2014)CrossRefGoogle Scholar
  45. 45.
    Richards, S.R.: Physical testing of fuel briquettes. Fuel Process. Technol. 25, 89–100 (1990)CrossRefGoogle Scholar
  46. 46.
    Said, N., Abdel Daiem, M.M., García-Maraver, A., Zamorano, M.: Influence of densification parameters on quality properties of rice straw pellets. Fuel Process. Technol. 138, 56–64 (2015)CrossRefGoogle Scholar
  47. 47.
    Said, N., Abdel Daiem, M.M., García-Maraver, A., Zamorano, M.: Reduction of ash sintering precursor components in rice straw by water washing. Bioresources 9, 6756–6764 (2014)CrossRefGoogle Scholar
  48. 48.
    Spanhol, A., Nones, D.L., Kumabe, F.J.B., Brand, M.A.: Quality of forest biomass pellets produced in State of Santa Catarina for power generation. Floresta. 45, 833–844 (2015)CrossRefGoogle Scholar
  49. 49.
    Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., Gondek, E.: Mechanical and combustion properties of sawdust—straw pellets blended in different proportions. Fuel Process. Technol. 156, 366–375 (2017)CrossRefGoogle Scholar
  50. 50.
    Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., Henriksen, U.B.: Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90, 3285–3290 (2011)CrossRefGoogle Scholar
  51. 51.
    Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z.J., Wang, D.: Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind. Crop. Prod. 33, 325–332 (2011)CrossRefGoogle Scholar
  52. 52.
    Tumuluru, J.S.: Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. 119, 44–57 (2014)CrossRefGoogle Scholar
  53. 53.
    Vale, A.T., Brasil, M.A.M., Leão, A.L.: Energetic quantification and characterization of wood and bark of species of “cerrado. Ciência Florestal 12, 71–80 (2002)CrossRefGoogle Scholar
  54. 54.
    Wang, S., Yuan, X., Li, C., Huang, Z., Leng, L., Zeng, G., Li, H.: Variation in the physical properties of wood pellets and emission of aldehyde/ketone under different storage conditions. Fuel 183, 314–321 (2016)CrossRefGoogle Scholar
  55. 55.
    Yin, C.Y.: Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90, 1128–1132 (2011)CrossRefGoogle Scholar
  56. 56.
    Zamorano, M., Popov, V., Rodríguez, M.L., García-Maraver, A.: A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renew. Energy 36, 3133–3140 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mário Vanoli Scatolino
    • 1
  • Lázaro Ferreira Cabral Neto
    • 2
  • Thiago de Paula Protásio
    • 3
  • Angélica de Cássia Oliveira Carneiro
    • 4
  • Carlos Rogério Andrade
    • 2
  • José Benedito Guimarães Júnior
    • 1
  • Lourival Marin Mendes
    • 1
  1. 1.Federal University of Lavras—UFLALavrasBrazil
  2. 2.Federal University of Goiás—UFGJataíBrazil
  3. 3.Federal Rural University of Amazonia—UFRAParauapebasBrazil
  4. 4.Federal University of Viçosa—UFVViçosaBrazil

Personalised recommendations